已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DualGCN: Exploring Syntactic and Semantic Information for Aspect-Based Sentiment Analysis

计算机科学 解析 自然语言处理 人工智能 判决 依赖关系(UML) 编码器 语法 依存语法 图形 理论计算机科学 操作系统
作者
Ruifan Li,Hao Chen,Fan Feng,Zhanyu Ma,Xiaojie Wang,Eduard Hovy
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7642-7656 被引量:5
标识
DOI:10.1109/tnnls.2022.3219615
摘要

The task of aspect-based sentiment analysis aims to identify sentiment polarities of given aspects in a sentence. Recent advances have demonstrated the advantage of incorporating the syntactic dependency structure with graph convolutional networks (GCNs). However, their performance of these GCN-based methods largely depends on the dependency parsers, which would produce diverse parsing results for a sentence. In this article, we propose a dual GCN (DualGCN) that jointly considers the syntax structures and semantic correlations. Our DualGCN model mainly comprises four modules: 1) SynGCN: instead of explicitly encoding syntactic structure, the SynGCN module uses the dependency probability matrix as a graph structure to implicitly integrate the syntactic information; 2) SemGCN: we design the SemGCN module with multihead attention to enhance the performance of the syntactic structure with the semantic information; 3) Regularizers: we propose orthogonal and differential regularizers to precisely capture semantic correlations between words by constraining attention scores in the SemGCN module; and 4) Mutual BiAffine: we use the BiAffine module to bridge relevant information between the SynGCN and SemGCN modules. Extensive experiments are conducted compared with up-to-date pretrained language encoders on two groups of datasets, one including Restaurant14, Laptop14, and Twitter and the other including Restaurant15 and Restaurant16. The experimental results demonstrate that the parsing results of various dependency parsers affect their performance of the GCN-based models. Our DualGCN model achieves superior performance compared with the state-of-the-art approaches. The source code and preprocessed datasets are provided and publicly available on GitHub (see https://github.com/CCChenhao997/DualGCN-ABSA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
呼噜发布了新的文献求助30
2秒前
Cain应助YJ888采纳,获得10
2秒前
铃兰完成签到 ,获得积分10
5秒前
6秒前
呆萌念梦发布了新的文献求助10
6秒前
7秒前
7秒前
顺利的飞荷完成签到,获得积分0
7秒前
文艺的小刺猬完成签到 ,获得积分10
8秒前
自觉岂愈发布了新的文献求助10
10秒前
ww发布了新的文献求助10
13秒前
科研通AI2S应助隐形双双采纳,获得10
13秒前
16秒前
自觉岂愈完成签到,获得积分10
21秒前
疯狂阅读发布了新的文献求助10
22秒前
22秒前
weilei完成签到,获得积分10
23秒前
23秒前
了0完成签到 ,获得积分10
25秒前
麻薯包完成签到,获得积分10
29秒前
赘婿应助菜菜采纳,获得10
31秒前
ww发布了新的文献求助10
32秒前
Akim应助呼噜采纳,获得10
34秒前
阿亮完成签到 ,获得积分10
34秒前
俭朴映阳完成签到 ,获得积分10
40秒前
42秒前
42秒前
今后应助喵呜啦啦啦啦采纳,获得10
45秒前
叶落孤城完成签到 ,获得积分10
45秒前
47秒前
orixero应助adinike采纳,获得10
51秒前
physicalproblem应助呆萌念梦采纳,获得10
51秒前
ww发布了新的文献求助10
53秒前
奔跑的神灯完成签到 ,获得积分10
54秒前
57秒前
Wzx完成签到 ,获得积分10
57秒前
hhh完成签到,获得积分20
59秒前
无情胡萝卜完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314278
求助须知:如何正确求助?哪些是违规求助? 2946569
关于积分的说明 8530780
捐赠科研通 2622286
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838