DualGCN: Exploring Syntactic and Semantic Information for Aspect-Based Sentiment Analysis

计算机科学 解析 自然语言处理 人工智能 判决 依赖关系(UML) 编码器 语法 依存语法 图形 理论计算机科学 操作系统
作者
Ruifan Li,Hao Chen,Fan Feng,Zhanyu Ma,Xiaojie Wang,Eduard Hovy
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7642-7656 被引量:5
标识
DOI:10.1109/tnnls.2022.3219615
摘要

The task of aspect-based sentiment analysis aims to identify sentiment polarities of given aspects in a sentence. Recent advances have demonstrated the advantage of incorporating the syntactic dependency structure with graph convolutional networks (GCNs). However, their performance of these GCN-based methods largely depends on the dependency parsers, which would produce diverse parsing results for a sentence. In this article, we propose a dual GCN (DualGCN) that jointly considers the syntax structures and semantic correlations. Our DualGCN model mainly comprises four modules: 1) SynGCN: instead of explicitly encoding syntactic structure, the SynGCN module uses the dependency probability matrix as a graph structure to implicitly integrate the syntactic information; 2) SemGCN: we design the SemGCN module with multihead attention to enhance the performance of the syntactic structure with the semantic information; 3) Regularizers: we propose orthogonal and differential regularizers to precisely capture semantic correlations between words by constraining attention scores in the SemGCN module; and 4) Mutual BiAffine: we use the BiAffine module to bridge relevant information between the SynGCN and SemGCN modules. Extensive experiments are conducted compared with up-to-date pretrained language encoders on two groups of datasets, one including Restaurant14, Laptop14, and Twitter and the other including Restaurant15 and Restaurant16. The experimental results demonstrate that the parsing results of various dependency parsers affect their performance of the GCN-based models. Our DualGCN model achieves superior performance compared with the state-of-the-art approaches. The source code and preprocessed datasets are provided and publicly available on GitHub (see https://github.com/CCChenhao997/DualGCN-ABSA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助墨墨采纳,获得10
刚刚
Ella发布了新的文献求助10
刚刚
Michael_li完成签到,获得积分10
刚刚
1秒前
MY999完成签到,获得积分10
2秒前
maomaomao发布了新的文献求助10
4秒前
搞学术的小牛马完成签到 ,获得积分10
4秒前
一直发布了新的文献求助10
6秒前
小饼干完成签到,获得积分10
7秒前
8秒前
10秒前
zjd完成签到,获得积分10
11秒前
11秒前
小羊发布了新的文献求助10
11秒前
一只千反田完成签到,获得积分10
12秒前
SolderOH完成签到,获得积分10
12秒前
12秒前
小二郎应助hx采纳,获得10
13秒前
13秒前
景平发布了新的文献求助10
15秒前
核桃发布了新的文献求助10
16秒前
16秒前
许子健发布了新的文献求助10
17秒前
19秒前
21秒前
22秒前
八戒的梦想完成签到,获得积分10
22秒前
语恒完成签到,获得积分10
23秒前
lalabang发布了新的文献求助10
23秒前
23秒前
年年完成签到,获得积分10
24秒前
漂亮的秋天完成签到 ,获得积分10
24秒前
26秒前
独特的易形完成签到,获得积分10
26秒前
许子健发布了新的文献求助10
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
思源应助科研通管家采纳,获得10
27秒前
27秒前
FashionBoy应助科研通管家采纳,获得10
27秒前
Hello应助科研通管家采纳,获得10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388