DualGCN: Exploring Syntactic and Semantic Information for Aspect-Based Sentiment Analysis

计算机科学 解析 自然语言处理 人工智能 判决 依赖关系(UML) 编码器 语法 依存语法 图形 理论计算机科学 操作系统
作者
Ruifan Li,Hao Chen,Fan Feng,Zhanyu Ma,Xiaojie Wang,Eduard Hovy
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7642-7656 被引量:5
标识
DOI:10.1109/tnnls.2022.3219615
摘要

The task of aspect-based sentiment analysis aims to identify sentiment polarities of given aspects in a sentence. Recent advances have demonstrated the advantage of incorporating the syntactic dependency structure with graph convolutional networks (GCNs). However, their performance of these GCN-based methods largely depends on the dependency parsers, which would produce diverse parsing results for a sentence. In this article, we propose a dual GCN (DualGCN) that jointly considers the syntax structures and semantic correlations. Our DualGCN model mainly comprises four modules: 1) SynGCN: instead of explicitly encoding syntactic structure, the SynGCN module uses the dependency probability matrix as a graph structure to implicitly integrate the syntactic information; 2) SemGCN: we design the SemGCN module with multihead attention to enhance the performance of the syntactic structure with the semantic information; 3) Regularizers: we propose orthogonal and differential regularizers to precisely capture semantic correlations between words by constraining attention scores in the SemGCN module; and 4) Mutual BiAffine: we use the BiAffine module to bridge relevant information between the SynGCN and SemGCN modules. Extensive experiments are conducted compared with up-to-date pretrained language encoders on two groups of datasets, one including Restaurant14, Laptop14, and Twitter and the other including Restaurant15 and Restaurant16. The experimental results demonstrate that the parsing results of various dependency parsers affect their performance of the GCN-based models. Our DualGCN model achieves superior performance compared with the state-of-the-art approaches. The source code and preprocessed datasets are provided and publicly available on GitHub (see https://github.com/CCChenhao997/DualGCN-ABSA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小潘同学完成签到,获得积分10
1秒前
1秒前
科研通AI5应助传统的海露采纳,获得10
2秒前
学术刘亦菲完成签到,获得积分10
2秒前
成就的烧鹅完成签到,获得积分20
2秒前
3秒前
dd发布了新的文献求助10
3秒前
luoshi应助leon采纳,获得30
4秒前
4秒前
wang完成签到,获得积分10
4秒前
可爱的函函应助hu采纳,获得10
4秒前
4秒前
我测你码关注了科研通微信公众号
5秒前
下课了吧发布了新的文献求助10
5秒前
jy发布了新的文献求助10
5秒前
绘梨衣完成签到,获得积分10
6秒前
数据线完成签到,获得积分10
6秒前
完美世界应助甜甜的难敌采纳,获得30
7秒前
满堂花醉三千客完成签到 ,获得积分10
7秒前
7秒前
7秒前
gao完成签到,获得积分10
8秒前
LiuRuizhe完成签到,获得积分10
8秒前
绘梨衣发布了新的文献求助10
8秒前
8秒前
9秒前
淡定紫菱发布了新的文献求助10
10秒前
李繁蕊发布了新的文献求助10
12秒前
万能图书馆应助愉快寄真采纳,获得10
12秒前
Rrr发布了新的文献求助10
12秒前
13秒前
13秒前
高兴藏花发布了新的文献求助10
13秒前
14秒前
顾闭月发布了新的文献求助10
16秒前
励志小薛完成签到,获得积分20
17秒前
doudou完成签到,获得积分10
17秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794