Transcriptomic Profiling of Plasma Extracellular Vesicles Enables Reliable Annotation of the Cancer-specific Transcriptome and Molecular Subtype

转录组 液体活检 亚型 生物 计算生物学 癌症生物标志物 核糖核酸 小RNA 基因 癌症 胞外囊泡 生物信息学 基因表达 微泡 遗传学 计算机科学 程序设计语言
作者
Vahid Bahrambeigi,Jaewon J. Lee,Vittorio Branchi,Kimal Rajapakshe,Zhichao Xu,Jason T. Henry,Kun Wang,Bret M. Stephens,Sarah Dhebat,Mark W. Hurd,Ryan Sun,Peng Yang,Eytan Ruppin,Wenyi Wang,Scott Kopetz,Anirban Maitra,Paola A. Guerrero
标识
DOI:10.1101/2022.10.27.514047
摘要

Abstract Longitudinal monitoring of patients with advanced cancers is crucial to evaluate both disease burden and treatment response. Current liquid biopsy approaches mostly rely on the detection of DNA-based biomarkers. However, plasma RNA analysis can unleash tremendous opportunities for tumor state interrogation and molecular subtyping. Through the application of deep learning algorithms to the deconvolved transcriptomes of RNA within plasma extracellular vesicles (evRNA), we successfully predict consensus molecular subtypes in metastatic colorectal cancer patients. We further demonstrate the ability to monitor changes in transcriptomic subtype under treatment selection pressure and identify molecular pathways in evRNA associated with recurrence. Our approach also identified expressed gene fusions and neoepitopes from evRNA. These results demonstrate the feasibility of transcriptomic-based liquid biopsy platforms for precision oncology approaches, spanning from the longitudinal monitoring of tumor subtype changes to identification of expressed fusions and neoantigens as cancer-specific therapeutic targets, sans the need for tissue-based sampling. Statement of significance We have developed an approach to interrogate changes in cancer molecular subtypes and differentially expressed genes, through the analysis and deconvolution of RNA sequencing of plasma EVs. Serial analyses of tumor-encoded transcriptomes in liquid biopsies can enable facile cancer detection and monitor for recurrences and therapy-induced tumor evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
goldenfleece完成签到,获得积分10
2秒前
2秒前
2秒前
脑洞疼应助玖Nine采纳,获得10
3秒前
3秒前
SciGPT应助real采纳,获得10
4秒前
北凤完成签到,获得积分10
5秒前
5秒前
SYLH应助yly采纳,获得10
6秒前
6秒前
cst发布了新的文献求助10
7秒前
小学生1005完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
开朗的立诚完成签到,获得积分10
8秒前
zxy发布了新的文献求助10
8秒前
8秒前
9秒前
岁月静好发布了新的文献求助10
9秒前
10秒前
归尘发布了新的文献求助10
10秒前
terrell完成签到,获得积分10
10秒前
现代雁桃完成签到,获得积分10
11秒前
zzzcc关注了科研通微信公众号
11秒前
11秒前
xixi发布了新的文献求助10
11秒前
胡安完成签到,获得积分10
12秒前
12秒前
13秒前
Wei_Li发布了新的文献求助10
14秒前
lllei发布了新的文献求助10
14秒前
Lucas应助cst采纳,获得10
14秒前
15秒前
15秒前
Jeremiah完成签到,获得积分10
15秒前
cczz完成签到,获得积分10
17秒前
qi发布了新的文献求助10
17秒前
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961589
求助须知:如何正确求助?哪些是违规求助? 3507917
关于积分的说明 11138698
捐赠科研通 3240341
什么是DOI,文献DOI怎么找? 1790929
邀请新用户注册赠送积分活动 872649
科研通“疑难数据库(出版商)”最低求助积分说明 803306