根际细菌
根际
生物肥料
生物
非生物胁迫
非生物成分
植物
细菌
生态学
生物化学
遗传学
基因
作者
Rahul Kumar,Prashant Swapnil,Mukesh Meena,Shweta Selpair,Bal Govind Yadav
出处
期刊:Sustainability
[MDPI AG]
日期:2022-11-22
卷期号:14 (23): 15514-15514
被引量:16
摘要
Plants are constantly exposed to both biotic and abiotic stresses which limit their growth and development and reduce productivity. In order to tolerate them, plants initiate a multitude of stress-specific responses which modulate different physiological, molecular and cellular mechanisms. However, many times the natural methods employed by plants for overcoming the stresses are not sufficient and require external assistance from the rhizosphere. The microbial community in the rhizosphere (known as the rhizomicrobiome) undergoes intraspecific as well as interspecific interaction and signaling. The rhizomicrobiome, as biostimulants, play a pivotal role in stimulating the growth of plants and providing resilience against abiotic stress. Such rhizobacteria which promote the development of plants and increase their yield and immunity are known as PGPR (plant growth promoting rhizobacteria). On the basis of contact, they are classified into two categories, extracellular (in soil around root, root surface and cellular space) and intracellular (nitrogen-fixing bacteria). They show their effects on plant growth directly (i.e., in absence of pathogens) or indirectly. Generally, they make their niche in concentrated form around roots, as the latter exude several nutrients, such as amino acids, lipids, proteins, etc. Rhizobacteria build a special symbiotic relationship with the plant or a section of the plant’s inner tissues. There are free-living PGPRs with the potential to work as biofertilizers. Additionally, studies show that PGPRs can ameliorate the effect of abiotic stresses and help in enhanced growth and development of plants producing therapeutically important compounds. This review focuses on the various mechanisms which are employed by PGPRs to mitigate the effect of different stresses in medicinal plants and enhance tolerance against these stress conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI