Machine Learning Models of Postoperative Atrial Fibrillation Prediction After Cardiac Surgery

医学 决策树 梯度升压 心房颤动 心脏外科 逻辑回归 支持向量机 冠状动脉搭桥手术 心脏病学 Boosting(机器学习) 内科学 体外循环 机器学习 推导 人工智能 动脉 随机森林 计算机科学
作者
Yufan Lu,Qingjuan Chen,Hu Zhang,Meijiao Huang,Yao Yu,Yue Ming,Min Yan,Yunxian Yu,Lina Yu
出处
期刊:Journal of Cardiothoracic and Vascular Anesthesia [Elsevier]
卷期号:37 (3): 360-366 被引量:6
标识
DOI:10.1053/j.jvca.2022.11.025
摘要

This study aimed to use machine learning algorithms to build an efficient forecasting model of atrial fibrillation after cardiac surgery, and to compare the predictive performance of machine learning to traditional logistic regression.A retrospective study.Second Affiliated Hospital of Zhejiang University School of Medicine.The study comprised 1,400 patients who underwent valve and/or coronary artery bypass grafting surgery with cardiopulmonary bypass from September 1, 2013 to December 31, 2018.None.Two machine learning approaches (gradient-boosting decision tree and support-vector machine) and logistic regression were used to build predictive models. The performance was compared by the area under the curve (AUC). The clinical practicability was assessed using decision curve analysis. Postoperative atrial fibrillation occurred in 519 patients (37.1%). The AUCs of the support-vector machine, logistic regression, and gradient boosting decision tree were 0.777 (95% CI: 0.772-0.781), 0.767 (95% CI: 0.762-0.772), and 0.765 (95% CI: 0.761-0.770), respectively. As decision curve analysis manifested, these models had achieved appropriate net benefit.In the authors' study, the support-vector machine model was the best predictor; it may be an effective tool for predicting atrial fibrillation after cardiac surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
4秒前
7秒前
ShengzhangLiu发布了新的文献求助10
7秒前
8秒前
科研小虫完成签到,获得积分10
8秒前
8秒前
8秒前
酷波er应助tt喜欢yas采纳,获得10
9秒前
烟消云散完成签到,获得积分10
11秒前
飞羽发布了新的文献求助10
12秒前
13秒前
完美不惜发布了新的文献求助10
14秒前
15秒前
菠萝菠萝哒应助shepherd采纳,获得10
16秒前
18秒前
Fupup发布了新的文献求助20
19秒前
20秒前
Colin发布了新的文献求助10
22秒前
橘子完成签到,获得积分10
22秒前
25秒前
星辰大海应助晓山青采纳,获得10
26秒前
打打应助vippp采纳,获得10
29秒前
tt喜欢yas发布了新的文献求助10
30秒前
英姑应助某某某采纳,获得10
31秒前
31秒前
kk完成签到,获得积分20
33秒前
不爱吃姜完成签到,获得积分0
36秒前
38秒前
39秒前
kiki发布了新的文献求助10
40秒前
hhhhh发布了新的文献求助10
42秒前
风趣的凝雁完成签到,获得积分10
43秒前
cocolu应助完美不惜采纳,获得10
44秒前
44秒前
botanist完成签到 ,获得积分10
45秒前
46秒前
戴士杰686发布了新的文献求助10
47秒前
Eri发布了新的文献求助20
47秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3378780
求助须知:如何正确求助?哪些是违规求助? 2994249
关于积分的说明 8758662
捐赠科研通 2678819
什么是DOI,文献DOI怎么找? 1467379
科研通“疑难数据库(出版商)”最低求助积分说明 678659
邀请新用户注册赠送积分活动 670251