Brain MR Image Classification Using Superpixel-Based Deep Transfer Learning

人工智能 卷积神经网络 模式识别(心理学) 计算机科学 学习迁移 深度学习 相似性(几何) 上下文图像分类 磁共振成像 特征(语言学) 图像(数学) 医学 放射科 语言学 哲学
作者
Tanmay Kumar Behera,Muhammad Attique Khan,Sambit Bakshi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1218-1227 被引量:30
标识
DOI:10.1109/jbhi.2022.3216270
摘要

Nowadays, brain MR (Magnetic Resonance) images are widely used by clinicians to examine the brain's anatomy to look into various pathological conditions like cerebrovascular incidents and neuro-degenerative diseases. Generally, these diseases can be identified with the MR images as "normal" and "abnormal" brains in a two-class classification problem or as disease-specific classes in a multi-class problem. This article presents an ensemble transfer learning-inspired deep architecture that uses the simple linear iterative clustering (SLIC)-based superpixel algorithm along with convolutional neural network (CNN) to classify the MR images as normal or abnormal. Superpixel algorithm segments the input MR images into clusters of regions defined by similarity measures using perceptual feature space. These superpixel images are beneficial as they can provide a compact and meaningful role in computationally demanding applications. The superpixel images are then fed to the deep convolutional neural network (CNN) to classify the images. Three brain MR image datasets, NITR-DHH, DS-75, and DS-160, are used to conduct the experimentation. Through the use of deep transfer learning, the model achieves performance accuracy of 88.15% (NITR-DHH), 98.15% (DS-160), and 98.33% (DS-75) even with the small-scale medical image dataset. The experimentally obtained results demonstrate that the proposed method is promising and efficient for clinical applications for diagnosing different brain diseases via MR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助lixm采纳,获得10
1秒前
认真雅阳完成签到 ,获得积分10
1秒前
博弈春秋发布了新的文献求助10
1秒前
LANKE完成签到,获得积分10
2秒前
Theshiled完成签到,获得积分10
2秒前
Betty完成签到,获得积分10
2秒前
jie酱拌面应助wujiao采纳,获得10
2秒前
无花果应助花开米兰城采纳,获得10
2秒前
粱烨华发布了新的文献求助10
3秒前
3秒前
小刘先生完成签到,获得积分20
4秒前
酷酷的滕完成签到,获得积分10
4秒前
矮小的万声完成签到,获得积分20
4秒前
4秒前
5秒前
laber应助红红采纳,获得50
5秒前
6秒前
6秒前
KaiZI发布了新的文献求助10
6秒前
8秒前
冷酷天问完成签到,获得积分10
8秒前
8秒前
8秒前
鲨鱼关注了科研通微信公众号
8秒前
8秒前
pan关闭了pan文献求助
8秒前
WLWLW举报shine求助涉嫌违规
8秒前
呱呱完成签到,获得积分10
9秒前
xiyang发布了新的文献求助10
9秒前
9秒前
发如雪完成签到 ,获得积分10
10秒前
serein完成签到,获得积分10
10秒前
安平发布了新的文献求助10
11秒前
英俊的铭应助zimu012采纳,获得10
11秒前
tfldog完成签到,获得积分10
11秒前
GH发布了新的文献求助10
12秒前
小巧雪糕发布了新的文献求助10
12秒前
chl完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794