Brain MR Image Classification Using Superpixel-Based Deep Transfer Learning

人工智能 卷积神经网络 模式识别(心理学) 计算机科学 学习迁移 深度学习 相似性(几何) 上下文图像分类 磁共振成像 特征(语言学) 图像(数学) 医学 放射科 语言学 哲学
作者
Tanmay Kumar Behera,Muhammad Attique Khan,Sambit Bakshi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1218-1227 被引量:30
标识
DOI:10.1109/jbhi.2022.3216270
摘要

Nowadays, brain MR (Magnetic Resonance) images are widely used by clinicians to examine the brain's anatomy to look into various pathological conditions like cerebrovascular incidents and neuro-degenerative diseases. Generally, these diseases can be identified with the MR images as "normal" and "abnormal" brains in a two-class classification problem or as disease-specific classes in a multi-class problem. This article presents an ensemble transfer learning-inspired deep architecture that uses the simple linear iterative clustering (SLIC)-based superpixel algorithm along with convolutional neural network (CNN) to classify the MR images as normal or abnormal. Superpixel algorithm segments the input MR images into clusters of regions defined by similarity measures using perceptual feature space. These superpixel images are beneficial as they can provide a compact and meaningful role in computationally demanding applications. The superpixel images are then fed to the deep convolutional neural network (CNN) to classify the images. Three brain MR image datasets, NITR-DHH, DS-75, and DS-160, are used to conduct the experimentation. Through the use of deep transfer learning, the model achieves performance accuracy of 88.15% (NITR-DHH), 98.15% (DS-160), and 98.33% (DS-75) even with the small-scale medical image dataset. The experimentally obtained results demonstrate that the proposed method is promising and efficient for clinical applications for diagnosing different brain diseases via MR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
伊斯坦布尔的鱼应助安宇采纳,获得10
1秒前
嗯嗯完成签到,获得积分10
2秒前
情怀应助瑶瑶采纳,获得10
3秒前
rundstedt完成签到 ,获得积分10
3秒前
还不错发布了新的文献求助10
3秒前
3秒前
思源应助niu采纳,获得10
3秒前
niuwenyu发布了新的文献求助10
3秒前
田様应助Deadman采纳,获得10
4秒前
5秒前
5秒前
elysia发布了新的文献求助10
6秒前
幽默胜完成签到,获得积分10
6秒前
跳跃完成签到 ,获得积分10
6秒前
6秒前
我是老大应助王先森采纳,获得10
7秒前
tjzbw完成签到,获得积分10
7秒前
甜美孤丹发布了新的文献求助10
7秒前
7秒前
所所应助Gengar采纳,获得10
7秒前
超级馒头应助Gengar采纳,获得10
7秒前
缓慢如南应助Gengar采纳,获得10
7秒前
7秒前
7秒前
zhang08完成签到,获得积分10
7秒前
狐狐完成签到,获得积分10
8秒前
8秒前
8秒前
DD应助123456采纳,获得10
9秒前
9秒前
9秒前
Triste完成签到,获得积分20
9秒前
Jasper应助还不错采纳,获得10
9秒前
9秒前
小龙人发布了新的文献求助10
10秒前
10秒前
李健应助纷雪采纳,获得10
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971091
求助须知:如何正确求助?哪些是违规求助? 3515797
关于积分的说明 11179488
捐赠科研通 3250872
什么是DOI,文献DOI怎么找? 1795536
邀请新用户注册赠送积分活动 875891
科研通“疑难数据库(出版商)”最低求助积分说明 805207