Brain MR Image Classification Using Superpixel-Based Deep Transfer Learning

人工智能 卷积神经网络 模式识别(心理学) 计算机科学 学习迁移 深度学习 相似性(几何) 上下文图像分类 磁共振成像 特征(语言学) 图像(数学) 医学 放射科 语言学 哲学
作者
Tanmay Kumar Behera,Muhammad Attique Khan,Sambit Bakshi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1218-1227 被引量:23
标识
DOI:10.1109/jbhi.2022.3216270
摘要

Nowadays, brain MR (Magnetic Resonance) images are widely used by clinicians to examine the brain's anatomy to look into various pathological conditions like cerebrovascular incidents and neuro-degenerative diseases. Generally, these diseases can be identified with the MR images as "normal" and "abnormal" brains in a two-class classification problem or as disease-specific classes in a multi-class problem. This article presents an ensemble transfer learning-inspired deep architecture that uses the simple linear iterative clustering (SLIC)-based superpixel algorithm along with convolutional neural network (CNN) to classify the MR images as normal or abnormal. Superpixel algorithm segments the input MR images into clusters of regions defined by similarity measures using perceptual feature space. These superpixel images are beneficial as they can provide a compact and meaningful role in computationally demanding applications. The superpixel images are then fed to the deep convolutional neural network (CNN) to classify the images. Three brain MR image datasets, NITR-DHH, DS-75, and DS-160, are used to conduct the experimentation. Through the use of deep transfer learning, the model achieves performance accuracy of 88.15% (NITR-DHH), 98.15% (DS-160), and 98.33% (DS-75) even with the small-scale medical image dataset. The experimentally obtained results demonstrate that the proposed method is promising and efficient for clinical applications for diagnosing different brain diseases via MR images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕青应助桃花源的瓶起子采纳,获得10
1秒前
Maigret完成签到,获得积分10
1秒前
Q.L完成签到,获得积分20
1秒前
JJ发布了新的文献求助10
2秒前
2秒前
ll完成签到 ,获得积分10
4秒前
流心小汤包完成签到,获得积分10
4秒前
5秒前
乐唔完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
李爱国应助打死小胖纸采纳,获得10
6秒前
凌晨四点半完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
Arui完成签到,获得积分10
8秒前
调研昵称发布了新的文献求助10
8秒前
耍酷千山发布了新的文献求助10
9秒前
9秒前
阳光翩跹完成签到 ,获得积分10
9秒前
郭桑完成签到,获得积分20
10秒前
超级寒香完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
传奇3应助稳重的寻雪采纳,获得10
12秒前
sober123完成签到,获得积分10
12秒前
12秒前
纪震宇发布了新的文献求助10
13秒前
13秒前
伶俐的静柏完成签到,获得积分10
14秒前
共享精神应助耍酷千山采纳,获得10
14秒前
14秒前
14秒前
超级寒香发布了新的文献求助10
14秒前
科研通AI5应助SI采纳,获得10
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126