Intelligent beam layout design for frame structure based on graph neural networks

帧(网络) 人工神经网络 计算机科学 图形 页面布局 人工智能 工程制图 工程类 理论计算机科学 电信 广告 业务
作者
Pengju Zhao,Wenjie Liao,Yuli Huang,Xinzheng Lu
出处
期刊:Journal of building engineering [Elsevier]
卷期号:63: 105499-105499 被引量:48
标识
DOI:10.1016/j.jobe.2022.105499
摘要

The layout design of the frame structure beams is a critical task in frame structure design. Traditional automatic layout methods often rely on established rules. However, the predefined rules are often incomplete, and the conflicts and priorities between different constraints are often unclear. Consequently, it is difficult for traditional automatic methods to meet the challenges of flexible layout of structures with free planar shapes. The beam–column connection of the frame structures exhibits the topological characteristics of graphs. A graph neural network is a data-driven geometric deep learning algorithm that is suitable for addressing non-Euclidean data such as graphs, thus providing a new solution for the beam layout design of frame structures. Therefore, this study proposes an intelligent plan layout design method for frame beams based on a graph neural network. A large-scale dataset of the frame structure layout was considered for the neural network training. Graph representation methods for frame structures are discussed, and a novel graph neural network model for beam layout design is proposed. The test results show that the proposed beam layout design method has high accuracy, and case studies of real-world frame structures show that the outcome of the proposed method is comparable to engineer's design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易哒哒发布了新的文献求助10
1秒前
1秒前
2秒前
微笑完成签到,获得积分10
2秒前
火星上的映安完成签到 ,获得积分10
2秒前
Microgan完成签到,获得积分10
2秒前
进击的小胳膊完成签到,获得积分10
3秒前
3秒前
科研通AI5应助徐徐采纳,获得80
3秒前
3秒前
Orange应助Joshua采纳,获得10
4秒前
5秒前
5秒前
6秒前
蒋时晏应助陶醉薯片采纳,获得30
6秒前
6秒前
执着的灯泡完成签到,获得积分10
6秒前
睡到自然醒完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
Musen完成签到,获得积分10
7秒前
科研通AI5应助叫滚滚采纳,获得10
7秒前
7秒前
123456发布了新的文献求助10
7秒前
大方安白发布了新的文献求助10
8秒前
Hello应助正直冰露采纳,获得10
8秒前
lyy完成签到 ,获得积分10
9秒前
沈随便发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
灵巧荆发布了新的文献求助10
10秒前
丘奇发布了新的文献求助10
10秒前
10秒前
10秒前
通~发布了新的文献求助10
11秒前
11秒前
搜集达人应助FloppyWow采纳,获得10
11秒前
Musen发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762