Intelligent beam layout design for frame structure based on graph neural networks

帧(网络) 人工神经网络 计算机科学 图形 页面布局 人工智能 工程制图 工程类 理论计算机科学 电信 广告 业务
作者
Pengju Zhao,Wenjie Liao,Yuli Huang,Xinzheng Lu
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:63: 105499-105499 被引量:48
标识
DOI:10.1016/j.jobe.2022.105499
摘要

The layout design of the frame structure beams is a critical task in frame structure design. Traditional automatic layout methods often rely on established rules. However, the predefined rules are often incomplete, and the conflicts and priorities between different constraints are often unclear. Consequently, it is difficult for traditional automatic methods to meet the challenges of flexible layout of structures with free planar shapes. The beam–column connection of the frame structures exhibits the topological characteristics of graphs. A graph neural network is a data-driven geometric deep learning algorithm that is suitable for addressing non-Euclidean data such as graphs, thus providing a new solution for the beam layout design of frame structures. Therefore, this study proposes an intelligent plan layout design method for frame beams based on a graph neural network. A large-scale dataset of the frame structure layout was considered for the neural network training. Graph representation methods for frame structures are discussed, and a novel graph neural network model for beam layout design is proposed. The test results show that the proposed beam layout design method has high accuracy, and case studies of real-world frame structures show that the outcome of the proposed method is comparable to engineer's design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七曜发布了新的文献求助10
1秒前
汉堡包应助小林采纳,获得10
1秒前
隐形谷秋发布了新的文献求助10
3秒前
淡淡紫山发布了新的文献求助10
3秒前
小琳关注了科研通微信公众号
3秒前
4秒前
酷波er应助西瓜xg采纳,获得10
4秒前
4秒前
6秒前
赘婿应助维克托雷采纳,获得10
7秒前
努力考研完成签到,获得积分10
9秒前
FashionBoy应助专注的御姐采纳,获得10
9秒前
老八的嘴发布了新的文献求助10
9秒前
9秒前
magic_sweets完成签到,获得积分10
9秒前
如意2023发布了新的文献求助10
9秒前
小马甲应助研友_656B85采纳,获得10
10秒前
zhanyuji发布了新的文献求助10
10秒前
orixero应助年轻的冷雁采纳,获得10
11秒前
12秒前
12秒前
马慧敏发布了新的文献求助10
12秒前
SisiZheng完成签到,获得积分10
13秒前
14秒前
小林发布了新的文献求助10
15秒前
16秒前
在水一方应助淡淡紫山采纳,获得10
16秒前
KA发布了新的文献求助10
16秒前
犹豫的归尘完成签到,获得积分10
17秒前
17秒前
17秒前
Bond完成签到 ,获得积分10
18秒前
19秒前
Michael-布莱恩特完成签到,获得积分10
20秒前
dnnnsns发布了新的文献求助50
21秒前
彩色碧菡完成签到,获得积分10
21秒前
术士1000发布了新的文献求助10
22秒前
Fairy完成签到,获得积分10
22秒前
西瓜xg发布了新的文献求助10
23秒前
杨冰发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967219
求助须知:如何正确求助?哪些是违规求助? 3512559
关于积分的说明 11164121
捐赠科研通 3247452
什么是DOI,文献DOI怎么找? 1793849
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804494