E-Nose: Time–Frequency Attention Convolutional Neural Network for Gas Classification and Concentration Prediction

卷积神经网络 电子鼻 人工智能 人工神经网络 模式识别(心理学) 计算机科学 环境科学 机器学习 语音识别
作者
Minglv Jiang,Na Li,Mingyong Li,Zhou Wang,Yuan Tian,Kaiyan Peng,Haoran Sheng,Haoyu Li,Qiang Li
出处
期刊:Sensors [MDPI AG]
卷期号:24 (13): 4126-4126 被引量:2
标识
DOI:10.3390/s24134126
摘要

In the electronic nose (E-nose) systems, gas type recognition and accurate concentration prediction are some of the most challenging issues. This study introduced an innovative pattern recognition method of time–frequency attention convolutional neural network (TFA-CNN). A time–frequency attention block was designed in the network, aiming to excavate and effectively integrate the temporal and frequency domain information in the E-nose signals to enhance the performance of gas classification and concentration prediction tasks. Additionally, a novel data augmentation strategy was developed, manipulating the feature channels and time dimensions to reduce the interference of sensor drift and redundant information, thereby enhancing the model’s robustness and adaptability. Utilizing two types of metal-oxide-semiconductor gas sensors, this research conducted qualitative and quantitative analysis on five target gases. The evaluation results showed that the classification accuracy could reach 100%, and the coefficient of the determination (R2) score of the regression task was up to 0.99. The Pearson correlation coefficient (r) was 0.99, and the mean absolute error (MAE) was 1.54 ppm. The experimental test results were almost consistent with the system predictions, and the MAE was 1.39 ppm. This study provides a method of network learning that combines time–frequency domain information, exhibiting high performance in gas classification and concentration prediction within the E-nose system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达平凡发布了新的文献求助10
1秒前
dd发布了新的文献求助10
1秒前
举人烧烤发布了新的文献求助10
1秒前
RF发布了新的文献求助10
4秒前
4秒前
刚刚好发布了新的文献求助10
4秒前
15169928657发布了新的文献求助10
6秒前
wanci应助举人烧烤采纳,获得10
6秒前
LILI完成签到 ,获得积分10
6秒前
yywww完成签到,获得积分10
7秒前
renjian发布了新的文献求助10
7秒前
小马甲应助52251013106采纳,获得10
8秒前
10秒前
猫的淡淡完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
Aria完成签到,获得积分10
14秒前
小团子完成签到,获得积分10
14秒前
Hello应助yywww采纳,获得10
14秒前
15秒前
17秒前
May完成签到,获得积分10
18秒前
狂野的乘风完成签到,获得积分10
18秒前
英姑应助人类高血压女性采纳,获得10
18秒前
18秒前
Isabelle完成签到 ,获得积分10
19秒前
19秒前
一二完成签到,获得积分10
19秒前
阔达平凡完成签到,获得积分10
19秒前
慕青应助Qinghen采纳,获得10
19秒前
木由子完成签到 ,获得积分10
19秒前
黄任行完成签到,获得积分10
19秒前
20秒前
ksq完成签到,获得积分10
20秒前
21秒前
21秒前
笛卡尔发布了新的文献求助10
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
举人烧烤发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756