E-Nose: Time–Frequency Attention Convolutional Neural Network for Gas Classification and Concentration Prediction

卷积神经网络 电子鼻 人工智能 人工神经网络 模式识别(心理学) 计算机科学 环境科学 机器学习 语音识别
作者
Minglv Jiang,Na Li,Mingyong Li,Zhou Wang,Yuan Tian,Kaiyan Peng,Haoran Sheng,Haoyu Li,Qiang Li
出处
期刊:Sensors [MDPI AG]
卷期号:24 (13): 4126-4126
标识
DOI:10.3390/s24134126
摘要

In the electronic nose (E-nose) systems, gas type recognition and accurate concentration prediction are some of the most challenging issues. This study introduced an innovative pattern recognition method of time–frequency attention convolutional neural network (TFA-CNN). A time–frequency attention block was designed in the network, aiming to excavate and effectively integrate the temporal and frequency domain information in the E-nose signals to enhance the performance of gas classification and concentration prediction tasks. Additionally, a novel data augmentation strategy was developed, manipulating the feature channels and time dimensions to reduce the interference of sensor drift and redundant information, thereby enhancing the model’s robustness and adaptability. Utilizing two types of metal-oxide-semiconductor gas sensors, this research conducted qualitative and quantitative analysis on five target gases. The evaluation results showed that the classification accuracy could reach 100%, and the coefficient of the determination (R2) score of the regression task was up to 0.99. The Pearson correlation coefficient (r) was 0.99, and the mean absolute error (MAE) was 1.54 ppm. The experimental test results were almost consistent with the system predictions, and the MAE was 1.39 ppm. This study provides a method of network learning that combines time–frequency domain information, exhibiting high performance in gas classification and concentration prediction within the E-nose system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助shade66666采纳,获得10
刚刚
Orange应助谨言采纳,获得10
3秒前
科研通AI2S应助周游采纳,获得10
4秒前
阿紫完成签到 ,获得积分20
8秒前
9秒前
10秒前
10秒前
11秒前
科研通AI2S应助lopik采纳,获得10
12秒前
12秒前
13秒前
15秒前
优雅的念真完成签到,获得积分10
15秒前
15秒前
15秒前
舒适亦凝发布了新的文献求助10
16秒前
Zq发布了新的文献求助10
16秒前
16秒前
16秒前
谨言发布了新的文献求助10
17秒前
Liuyuting1008完成签到,获得积分10
17秒前
甜甜玫瑰应助周游采纳,获得10
17秒前
18秒前
小二郎应助敏感面包采纳,获得30
18秒前
19秒前
牧紊完成签到 ,获得积分10
19秒前
20秒前
充电宝应助66m37采纳,获得10
20秒前
22完成签到,获得积分10
21秒前
迅速文龙发布了新的文献求助10
21秒前
Soso完成签到,获得积分10
22秒前
ysta发布了新的文献求助10
22秒前
高会和发布了新的文献求助10
22秒前
25秒前
22发布了新的文献求助10
26秒前
28秒前
高会和完成签到,获得积分10
29秒前
29秒前
香蕉觅云应助ysta采纳,获得10
29秒前
31秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233254
求助须知:如何正确求助?哪些是违规求助? 2879834
关于积分的说明 8212896
捐赠科研通 2547289
什么是DOI,文献DOI怎么找? 1376718
科研通“疑难数据库(出版商)”最低求助积分说明 647683
邀请新用户注册赠送积分活动 623115