E-Nose: Time–Frequency Attention Convolutional Neural Network for Gas Classification and Concentration Prediction

卷积神经网络 电子鼻 人工智能 人工神经网络 模式识别(心理学) 计算机科学 环境科学 机器学习 语音识别
作者
Minglv Jiang,Na Li,Mingyong Li,Zhou Wang,Yuan Tian,Kaiyan Peng,Haoran Sheng,Haoyu Li,Qiang Li
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (13): 4126-4126 被引量:1
标识
DOI:10.3390/s24134126
摘要

In the electronic nose (E-nose) systems, gas type recognition and accurate concentration prediction are some of the most challenging issues. This study introduced an innovative pattern recognition method of time–frequency attention convolutional neural network (TFA-CNN). A time–frequency attention block was designed in the network, aiming to excavate and effectively integrate the temporal and frequency domain information in the E-nose signals to enhance the performance of gas classification and concentration prediction tasks. Additionally, a novel data augmentation strategy was developed, manipulating the feature channels and time dimensions to reduce the interference of sensor drift and redundant information, thereby enhancing the model’s robustness and adaptability. Utilizing two types of metal-oxide-semiconductor gas sensors, this research conducted qualitative and quantitative analysis on five target gases. The evaluation results showed that the classification accuracy could reach 100%, and the coefficient of the determination (R2) score of the regression task was up to 0.99. The Pearson correlation coefficient (r) was 0.99, and the mean absolute error (MAE) was 1.54 ppm. The experimental test results were almost consistent with the system predictions, and the MAE was 1.39 ppm. This study provides a method of network learning that combines time–frequency domain information, exhibiting high performance in gas classification and concentration prediction within the E-nose system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CR7应助越啊采纳,获得20
刚刚
李健应助123采纳,获得10
1秒前
Jun完成签到,获得积分10
2秒前
大反应釜发布了新的文献求助10
2秒前
淳于安筠发布了新的文献求助30
5秒前
柳叶洋完成签到,获得积分10
5秒前
下一秒发布了新的文献求助10
8秒前
9秒前
10秒前
无花果应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得30
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得30
10秒前
Jasper应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
11秒前
Ava应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
SYLH应助shensiang采纳,获得20
12秒前
专一的从波完成签到 ,获得积分10
12秒前
领导范儿应助msjs采纳,获得30
12秒前
量子星尘发布了新的文献求助10
14秒前
安静的幼旋完成签到,获得积分10
15秒前
15秒前
白石溪发布了新的文献求助10
15秒前
15秒前
loski发布了新的文献求助10
15秒前
17秒前
勤恳化蛹完成签到,获得积分10
17秒前
黄健斌发布了新的文献求助10
18秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174