亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

E-Nose: Time–Frequency Attention Convolutional Neural Network for Gas Classification and Concentration Prediction

卷积神经网络 电子鼻 人工智能 人工神经网络 模式识别(心理学) 计算机科学 环境科学 机器学习 语音识别
作者
Minglv Jiang,Na Li,Mingyong Li,Zhou Wang,Yuan Tian,Kaiyan Peng,Haoran Sheng,Haoyu Li,Qiang Li
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (13): 4126-4126 被引量:2
标识
DOI:10.3390/s24134126
摘要

In the electronic nose (E-nose) systems, gas type recognition and accurate concentration prediction are some of the most challenging issues. This study introduced an innovative pattern recognition method of time–frequency attention convolutional neural network (TFA-CNN). A time–frequency attention block was designed in the network, aiming to excavate and effectively integrate the temporal and frequency domain information in the E-nose signals to enhance the performance of gas classification and concentration prediction tasks. Additionally, a novel data augmentation strategy was developed, manipulating the feature channels and time dimensions to reduce the interference of sensor drift and redundant information, thereby enhancing the model’s robustness and adaptability. Utilizing two types of metal-oxide-semiconductor gas sensors, this research conducted qualitative and quantitative analysis on five target gases. The evaluation results showed that the classification accuracy could reach 100%, and the coefficient of the determination (R2) score of the regression task was up to 0.99. The Pearson correlation coefficient (r) was 0.99, and the mean absolute error (MAE) was 1.54 ppm. The experimental test results were almost consistent with the system predictions, and the MAE was 1.39 ppm. This study provides a method of network learning that combines time–frequency domain information, exhibiting high performance in gas classification and concentration prediction within the E-nose system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正直听白发布了新的文献求助10
2秒前
正直听白完成签到,获得积分10
19秒前
穿花雪完成签到,获得积分10
19秒前
tianzml0应助穿花雪采纳,获得30
24秒前
59秒前
Shuo完成签到,获得积分10
1分钟前
馆长举报曼凡求助涉嫌违规
1分钟前
HS完成签到,获得积分10
2分钟前
豆豆完成签到 ,获得积分10
2分钟前
3分钟前
科研通AI5应助herococa采纳,获得20
3分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
4分钟前
华仔应助超级飞侠采纳,获得10
4分钟前
4分钟前
ANTianxu完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
99hz关注了科研通微信公众号
5分钟前
5分钟前
99hz发布了新的文献求助10
5分钟前
MchemG应助科研通管家采纳,获得10
6分钟前
MchemG应助科研通管家采纳,获得10
6分钟前
MchemG应助科研通管家采纳,获得10
6分钟前
LArry完成签到,获得积分10
6分钟前
6分钟前
微笑笑萍完成签到,获得积分10
6分钟前
6分钟前
6分钟前
jimmy_bytheway完成签到,获得积分0
7分钟前
健忘的溪灵完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
MchemG应助科研通管家采纳,获得10
8分钟前
领导范儿应助科研通管家采纳,获得10
8分钟前
852应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
Noob_saibot完成签到,获得积分10
8分钟前
牛八先生完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568741
求助须知:如何正确求助?哪些是违规求助? 3991231
关于积分的说明 12355514
捐赠科研通 3663277
什么是DOI,文献DOI怎么找? 2018813
邀请新用户注册赠送积分活动 1053218
科研通“疑难数据库(出版商)”最低求助积分说明 940791