Influentials, early adopters, or random targets? Optimal seeding strategies under vertical differentiations

播种 早期采用者 计算机科学 生物 农学 操作系统
作者
Fang Cui,Le Wang,Xin Luo,Xueying Cui
出处
期刊:Decision Support Systems [Elsevier]
卷期号:183: 114263-114263 被引量:1
标识
DOI:10.1016/j.dss.2024.114263
摘要

Product seeding, defined as the act by which firms send products to selected customers and encourage them to spread word of mouth, is a critical decision support strategy for the success of new products. Using multiple agent-based simulation techniques, we investigated the relative importance of three widely adopted seeding strategies (seeding influentials, early adopters, and random targets) in a competitive market in which products are vertically differentiated in terms of quality and brand strength. We found robust evidence that the finding of an optimal seeding strategy depends on consumers' propensity to spread negative WOM. When negative WOM propensity is low, seeding influentials outperform seeding early adopters or random targets. When negative WOM propensity is high, decision-making about an optimal seeding strategy relies on the relative quality and brand strength of the product and the focal firm's objective. In particular, if a product's relative quality is low, seeding early adopters is the optimal seeding strategy in terms of both market share (MS) and net present value (NPV); if the product's relative quality is equal, seeding early adopters is most effective for increasing MS, while seeding influentials is the best for increasing NPV; and if the product's relative quality is high, seeding influentials is the optimal strategy, except that for products with strong brand strength and firm aims at maximizing the MS growth. We conclude the paper by discussing its theoretical contributions and managerial relevance for decision support.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
charllie完成签到 ,获得积分10
刚刚
隐形曼青应助牛牛采纳,获得10
刚刚
lsong完成签到,获得积分10
1秒前
ziyue发布了新的文献求助10
2秒前
2秒前
梦见鲸鱼岛完成签到,获得积分10
2秒前
王凯发布了新的文献求助10
2秒前
lucky发布了新的文献求助10
3秒前
Boston完成签到,获得积分10
4秒前
5秒前
ayaka发布了新的文献求助10
5秒前
星期天不上发条完成签到 ,获得积分10
6秒前
WuCola完成签到 ,获得积分10
6秒前
wangzx完成签到,获得积分10
7秒前
7秒前
AishuangQi完成签到,获得积分10
7秒前
7秒前
雨田完成签到,获得积分10
7秒前
茉莉完成签到 ,获得积分10
9秒前
AAAA发布了新的文献求助10
11秒前
11秒前
12秒前
yueyeu567发布了新的文献求助10
13秒前
WangQ完成签到,获得积分10
13秒前
充电宝应助雨田采纳,获得10
13秒前
Eva完成签到,获得积分10
14秒前
15秒前
lxr发布了新的文献求助10
15秒前
江江云完成签到,获得积分20
16秒前
19秒前
19秒前
20秒前
20秒前
小高发布了新的文献求助10
20秒前
bkagyin应助AAAA采纳,获得10
21秒前
棖0921发布了新的文献求助30
21秒前
23秒前
rainbow发布了新的文献求助20
24秒前
球球爱科研完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604240
求助须知:如何正确求助?哪些是违规求助? 4689005
关于积分的说明 14857491
捐赠科研通 4697182
什么是DOI,文献DOI怎么找? 2541216
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471867