已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Influentials, early adopters, or random targets? Optimal seeding strategies under vertical differentiations

播种 早期采用者 计算机科学 生物 农学 操作系统
作者
Fang Cui,Le Wang,Xin Luo,Xueying Cui
出处
期刊:Decision Support Systems [Elsevier]
卷期号:183: 114263-114263 被引量:1
标识
DOI:10.1016/j.dss.2024.114263
摘要

Product seeding, defined as the act by which firms send products to selected customers and encourage them to spread word of mouth, is a critical decision support strategy for the success of new products. Using multiple agent-based simulation techniques, we investigated the relative importance of three widely adopted seeding strategies (seeding influentials, early adopters, and random targets) in a competitive market in which products are vertically differentiated in terms of quality and brand strength. We found robust evidence that the finding of an optimal seeding strategy depends on consumers' propensity to spread negative WOM. When negative WOM propensity is low, seeding influentials outperform seeding early adopters or random targets. When negative WOM propensity is high, decision-making about an optimal seeding strategy relies on the relative quality and brand strength of the product and the focal firm's objective. In particular, if a product's relative quality is low, seeding early adopters is the optimal seeding strategy in terms of both market share (MS) and net present value (NPV); if the product's relative quality is equal, seeding early adopters is most effective for increasing MS, while seeding influentials is the best for increasing NPV; and if the product's relative quality is high, seeding influentials is the optimal strategy, except that for products with strong brand strength and firm aims at maximizing the MS growth. We conclude the paper by discussing its theoretical contributions and managerial relevance for decision support.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lio发布了新的文献求助30
1秒前
三余完成签到,获得积分10
1秒前
研友_VZG7GZ应助李萌采纳,获得10
1秒前
CodeCraft应助Mike采纳,获得10
4秒前
hrs完成签到,获得积分10
4秒前
哈哈哈完成签到 ,获得积分10
6秒前
flymove完成签到,获得积分10
8秒前
三行四列行列式完成签到,获得积分10
9秒前
李健应助曾经山灵采纳,获得10
11秒前
英俊安蕾完成签到,获得积分10
11秒前
LYC发布了新的文献求助10
11秒前
赘婿应助会爆浆的陈子采纳,获得10
16秒前
17秒前
17秒前
穆一手完成签到 ,获得积分10
18秒前
梦游游游完成签到,获得积分10
18秒前
Zhaosixin完成签到 ,获得积分10
20秒前
21秒前
000发布了新的文献求助10
21秒前
C胖胖完成签到,获得积分10
25秒前
27秒前
香蕉新筠发布了新的文献求助10
28秒前
华仔应助三余采纳,获得10
29秒前
ding应助Satan采纳,获得10
29秒前
大力的图图关注了科研通微信公众号
31秒前
虚心涵山完成签到 ,获得积分10
36秒前
000完成签到,获得积分10
41秒前
深情安青应助孙漪采纳,获得10
44秒前
47秒前
辛勤者完成签到,获得积分0
47秒前
bkagyin应助小巧寒烟采纳,获得10
47秒前
48秒前
49秒前
兴奋的听筠完成签到,获得积分10
50秒前
自由念露完成签到 ,获得积分10
50秒前
50秒前
王梦雨发布了新的文献求助10
52秒前
脊柱小白菜完成签到,获得积分10
52秒前
何必在乎发布了新的文献求助10
53秒前
herpes发布了新的文献求助30
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680690
求助须知:如何正确求助?哪些是违规求助? 5001279
关于积分的说明 15173904
捐赠科研通 4840550
什么是DOI,文献DOI怎么找? 2594155
邀请新用户注册赠送积分活动 1547245
关于科研通互助平台的介绍 1505200