Influentials, early adopters, or random targets? Optimal seeding strategies under vertical differentiations

播种 早期采用者 计算机科学 生物 农学 操作系统
作者
Fang Cui,Le Wang,Xin Luo,Xueying Cui
出处
期刊:Decision Support Systems [Elsevier]
卷期号:183: 114263-114263 被引量:1
标识
DOI:10.1016/j.dss.2024.114263
摘要

Product seeding, defined as the act by which firms send products to selected customers and encourage them to spread word of mouth, is a critical decision support strategy for the success of new products. Using multiple agent-based simulation techniques, we investigated the relative importance of three widely adopted seeding strategies (seeding influentials, early adopters, and random targets) in a competitive market in which products are vertically differentiated in terms of quality and brand strength. We found robust evidence that the finding of an optimal seeding strategy depends on consumers' propensity to spread negative WOM. When negative WOM propensity is low, seeding influentials outperform seeding early adopters or random targets. When negative WOM propensity is high, decision-making about an optimal seeding strategy relies on the relative quality and brand strength of the product and the focal firm's objective. In particular, if a product's relative quality is low, seeding early adopters is the optimal seeding strategy in terms of both market share (MS) and net present value (NPV); if the product's relative quality is equal, seeding early adopters is most effective for increasing MS, while seeding influentials is the best for increasing NPV; and if the product's relative quality is high, seeding influentials is the optimal strategy, except that for products with strong brand strength and firm aims at maximizing the MS growth. We conclude the paper by discussing its theoretical contributions and managerial relevance for decision support.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
要减肥白晴关注了科研通微信公众号
1秒前
1秒前
一颗咸蛋黄完成签到 ,获得积分10
3秒前
3秒前
CipherSage应助一二三四11采纳,获得10
4秒前
做实验全靠师妹带完成签到,获得积分10
4秒前
Hilda007发布了新的文献求助100
4秒前
xdedd完成签到,获得积分10
5秒前
淡泊宁静完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
歇洛克发布了新的文献求助10
6秒前
7秒前
酷波er应助坦率灵槐采纳,获得10
7秒前
聪慧元绿完成签到,获得积分10
8秒前
危机的阁完成签到,获得积分10
8秒前
犹豫忆灵发布了新的文献求助10
9秒前
所所应助bfbdfbdf采纳,获得10
9秒前
year发布了新的文献求助50
9秒前
Jee完成签到,获得积分20
10秒前
海绵宝宝发布了新的文献求助10
10秒前
思源应助Meditation采纳,获得10
10秒前
sacrum13发布了新的文献求助10
10秒前
英俊的铭应助小张采纳,获得10
10秒前
斯文败类应助索大学术采纳,获得10
10秒前
11秒前
香蕉觅云应助热心幻天采纳,获得10
11秒前
zhaobo发布了新的文献求助10
11秒前
bkagyin应助tronghuong采纳,获得20
11秒前
小透明发布了新的文献求助80
12秒前
13秒前
诚心宛筠应助老实善愁采纳,获得10
13秒前
隐形曼青应助Zoye采纳,获得10
14秒前
wad发布了新的文献求助10
14秒前
脑洞疼应助Jee采纳,获得10
15秒前
16秒前
16秒前
李文华完成签到,获得积分20
16秒前
迷路的含桃完成签到 ,获得积分10
17秒前
张姝凤发布了新的文献求助20
17秒前
二十完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613276
求助须知:如何正确求助?哪些是违规求助? 4698456
关于积分的说明 14897966
捐赠科研通 4735724
什么是DOI,文献DOI怎么找? 2546946
邀请新用户注册赠送积分活动 1510961
关于科研通互助平台的介绍 1473537