亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toward intelligent demand-side energy management via substation-level flexible load disaggregation

需求方 能源管理 能源需求 负荷管理 需求响应 能量(信号处理) 汽车工程 计算机科学 工程类 环境经济学 电气工程 经济 统计 数学
作者
Ang Gao,Jianyong Zheng,Fei Mei,Yu Liu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:367: 123361-123361
标识
DOI:10.1016/j.apenergy.2024.123361
摘要

Non-intrusive load monitoring is a prominent part of demand-side energy management that provides visibility of flexible loads to support real-time electricity market pricing strategies and intelligent demand response programs. Compared with household-level load disaggregation, substation-level load disaggregation can significantly preserve residential privacy and reduce facility costs while providing sufficient information of flexible loads for intelligent demand-side energy management from the area scale. Especially, among various flexible loads, thermostatically controlled loads are highlighted due to their large proportion and high demand response elasticity. However, due to the variation and complexity of residential routines on a large scale, disaggregation of flexible loads from the substation level remains unsolved. To this end, focusing on thermostatically controlled loads, this paper proposes a contrastive sequence-to-point learning algorithm for substation-level flexible load disaggregation to fill the research gap. In the first stage, the theory of the effect of load aggregation and thermal inertia effect is introduced, and significant impact factors on flexible loads are summarized. Secondly, a substation-level flexible load disaggregation algorithm based on contrastive sequence-to-point learning is proposed, where pair-wise comparison and residual mechanism are combined in a semi-supervised structure to extract deep features and track fluctuations in flexible loads. Then, SHapley Additive exPlanations are utilized to ensure the optimization and interpretability of the algorithm. The proposed algorithm is tested and verified on public datasets under low frequency, reducing the disaggregation Mean Absolute Percentage Error of thermostatically controlled loads to as low as 8.78% and 11.26% for bi-directional and unidirectional structures separately. Additionally, it is generalizable to disaggregate other flexible loads, including photovoltaic and electric vehicles, demonstrating satisfactory performance. The algorithm has proved to be robust to data sparsity problems and practical for substation-level demand response potential estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wei发布了新的文献求助10
14秒前
58秒前
七七发布了新的文献求助10
1分钟前
科研通AI2S应助冷静新烟采纳,获得10
1分钟前
慕青应助韓導采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
ariaooo发布了新的文献求助50
2分钟前
韓導发布了新的文献求助10
2分钟前
ariaooo完成签到,获得积分10
2分钟前
科研通AI2S应助冷静新烟采纳,获得10
3分钟前
韓導完成签到,获得积分10
3分钟前
3分钟前
358489228完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
米奇妙妙屋完成签到,获得积分10
3分钟前
充电宝应助sumini采纳,获得30
3分钟前
4分钟前
灯光师完成签到,获得积分10
4分钟前
rose完成签到,获得积分10
4分钟前
天天快乐应助Emiya采纳,获得10
4分钟前
4分钟前
dovejingling完成签到,获得积分10
4分钟前
djh发布了新的文献求助10
4分钟前
4分钟前
iris发布了新的文献求助10
4分钟前
上官若男应助帅气的安柏采纳,获得10
4分钟前
4分钟前
我是老大应助iris采纳,获得10
4分钟前
FashionBoy应助djh采纳,获得10
4分钟前
白云发布了新的文献求助10
4分钟前
yukky完成签到,获得积分10
4分钟前
GPTea完成签到,获得积分0
4分钟前
4分钟前
大个应助yukky采纳,获得30
4分钟前
sumini发布了新的文献求助30
4分钟前
5分钟前
碧蓝恶天完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926521
求助须知:如何正确求助?哪些是违规求助? 4196268
关于积分的说明 13032297
捐赠科研通 3968426
什么是DOI,文献DOI怎么找? 2174970
邀请新用户注册赠送积分活动 1192161
关于科研通互助平台的介绍 1102388