Hyperspectral estimation model of soil organic matter content based on principal gradient grey information

高光谱成像 主成分分析 数学 土壤有机质 计算机科学 模式识别(心理学) 土壤科学 统计 人工智能 环境科学 土壤水分
作者
Lu Xu,Shuang Cao,Xican Li
出处
期刊:Grey systems [Emerald (MCB UP)]
卷期号:14 (3): 561-579
标识
DOI:10.1108/gs-12-2023-0124
摘要

Purpose In order to explore a new estimation approach of hyperspectral estimation, this paper aims to establish a hyperspectral estimation model of soil organic matter content with the principal gradient grey information based on the grey information theory. Design/methodology/approach Firstly, the estimation factors are selected by transforming the spectral data. The eigenvalue matrix of the modelling samples is converted into grey information matrix by using the method of increasing information and taking large, and the principal gradient grey information of modelling samples is calculated by using the method of pro-information interpolation and straight-line interpolation, respectively, and the hyperspectral estimation model of soil organic matter content is established. Then, the positive and inverse grey relational degree are used to identify the principal gradient information quantity of the test samples corresponding to the known patterns, and the cubic polynomial method is used to optimize the principal gradient information quantity for improving estimation accuracy. Finally, the established model is used to estimate the soil organic matter content of Zhangqiu and Jiyang District of Jinan City, Shandong Province. Findings The results show that the model has the higher estimation accuracy, among the average relative error of 23 test samples is 5.7524%, and the determination coefficient is 0.9002. Compared with the commonly used methods such as multiple linear regression, support vector machine and BP neural network, the hyperspectral estimation accuracy of soil organic matter content is significantly improved. The application example shows that the estimation model proposed in this paper is feasible and effective. Practical implications The estimation model in this paper not only fully excavates and utilizes the internal grey information of known samples with “insufficient and incomplete information”, but also effectively overcomes the randomness and grey uncertainty in the spectral estimation. The research results not only enrich the grey system theory and methods, but also provide a new approach for hyperspectral estimation of soil properties such as soil organic matter content, water content and so on. Originality/value The paper succeeds in realizing both a new hyperspectral estimation model of soil organic matter content based on the principal gradient grey information and effectively dealing with the randomness and grey uncertainty in spectral estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
务实盼海发布了新的文献求助10
2秒前
徐徐徐徐发布了新的文献求助10
3秒前
星晴遇见花海完成签到,获得积分10
3秒前
乐乐应助Rrr采纳,获得10
4秒前
难过鸿涛应助srt采纳,获得10
5秒前
6秒前
卡卡发布了新的文献求助10
6秒前
6秒前
8秒前
Jasper应助刘芸芸采纳,获得10
9秒前
m彬m彬完成签到 ,获得积分10
9秒前
10秒前
自信鑫鹏完成签到,获得积分10
10秒前
HYH完成签到,获得积分10
10秒前
Harish完成签到,获得积分10
11秒前
研友_851KE8发布了新的文献求助10
11秒前
11秒前
一段乐多发布了新的文献求助10
11秒前
11秒前
华仔完成签到,获得积分10
11秒前
刘百慧完成签到,获得积分10
11秒前
11秒前
Wyan发布了新的文献求助80
13秒前
成就映秋发布了新的文献求助30
13秒前
科研通AI2S应助坤坤采纳,获得10
13秒前
整齐芷文完成签到,获得积分10
14秒前
科研通AI5应助小马哥36采纳,获得10
14秒前
灵巧荆发布了新的文献求助10
15秒前
小二郎应助侦察兵采纳,获得10
15秒前
爆米花完成签到 ,获得积分10
15秒前
今后应助Evan123采纳,获得10
15秒前
凤凰之玉完成签到 ,获得积分10
16秒前
shi hui应助冬瓜炖排骨采纳,获得10
16秒前
17秒前
dyh6802发布了新的文献求助10
17秒前
冷静雅青发布了新的文献求助10
17秒前
CipherSage应助猪猪hero采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794