Hyperspectral estimation model of soil organic matter content based on principal gradient grey information

高光谱成像 主成分分析 数学 土壤有机质 计算机科学 模式识别(心理学) 土壤科学 统计 人工智能 环境科学 土壤水分
作者
Lu Xu,Shuang Cao,Xican Li
出处
期刊:Grey systems [Emerald (MCB UP)]
卷期号:14 (3): 561-579
标识
DOI:10.1108/gs-12-2023-0124
摘要

Purpose In order to explore a new estimation approach of hyperspectral estimation, this paper aims to establish a hyperspectral estimation model of soil organic matter content with the principal gradient grey information based on the grey information theory. Design/methodology/approach Firstly, the estimation factors are selected by transforming the spectral data. The eigenvalue matrix of the modelling samples is converted into grey information matrix by using the method of increasing information and taking large, and the principal gradient grey information of modelling samples is calculated by using the method of pro-information interpolation and straight-line interpolation, respectively, and the hyperspectral estimation model of soil organic matter content is established. Then, the positive and inverse grey relational degree are used to identify the principal gradient information quantity of the test samples corresponding to the known patterns, and the cubic polynomial method is used to optimize the principal gradient information quantity for improving estimation accuracy. Finally, the established model is used to estimate the soil organic matter content of Zhangqiu and Jiyang District of Jinan City, Shandong Province. Findings The results show that the model has the higher estimation accuracy, among the average relative error of 23 test samples is 5.7524%, and the determination coefficient is 0.9002. Compared with the commonly used methods such as multiple linear regression, support vector machine and BP neural network, the hyperspectral estimation accuracy of soil organic matter content is significantly improved. The application example shows that the estimation model proposed in this paper is feasible and effective. Practical implications The estimation model in this paper not only fully excavates and utilizes the internal grey information of known samples with “insufficient and incomplete information”, but also effectively overcomes the randomness and grey uncertainty in the spectral estimation. The research results not only enrich the grey system theory and methods, but also provide a new approach for hyperspectral estimation of soil properties such as soil organic matter content, water content and so on. Originality/value The paper succeeds in realizing both a new hyperspectral estimation model of soil organic matter content based on the principal gradient grey information and effectively dealing with the randomness and grey uncertainty in spectral estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吉吉发布了新的文献求助10
刚刚
研友_ZrBNxZ发布了新的文献求助10
刚刚
2025超分子化学完成签到,获得积分10
刚刚
2秒前
SirDream完成签到,获得积分10
2秒前
kunkun完成签到,获得积分10
3秒前
llwxx发布了新的文献求助10
3秒前
勤劳白翠发布了新的文献求助10
3秒前
biudungdung发布了新的文献求助10
3秒前
4秒前
罗祥宇发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
赘婿应助爱浦西的迪克采纳,获得10
5秒前
5秒前
FashionBoy应助三水采纳,获得10
5秒前
局内人发布了新的文献求助10
7秒前
7秒前
7秒前
丘比特应助叶子采纳,获得10
8秒前
尼嚎发布了新的文献求助10
8秒前
8秒前
月亮不知道完成签到,获得积分10
8秒前
GingerF应助farr采纳,获得50
9秒前
anna521212发布了新的文献求助10
9秒前
9秒前
9秒前
研友_ZrBNxZ完成签到,获得积分10
9秒前
kkem发布了新的文献求助10
9秒前
10秒前
10秒前
深情安青应助外向的梦安采纳,获得10
10秒前
彩色芝麻发布了新的文献求助10
10秒前
阳光彩虹发布了新的文献求助10
10秒前
30°C发布了新的文献求助10
10秒前
samuealndjw完成签到,获得积分10
11秒前
11秒前
光0921发布了新的文献求助10
11秒前
song完成签到,获得积分10
11秒前
旅途完成签到,获得积分10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750468
求助须知:如何正确求助?哪些是违规求助? 5464085
关于积分的说明 15366838
捐赠科研通 4889446
什么是DOI,文献DOI怎么找? 2629235
邀请新用户注册赠送积分活动 1577526
关于科研通互助平台的介绍 1534012