Controlling the morphology of polycrystalline diamond films via seed density: Influence on grain size and film texture

钻石 化学气相沉积 材料科学 微晶 纹理(宇宙学) 金刚石材料性能 拉曼光谱 沉积(地质) 化学工程 碳膜 纳米技术 薄膜 复合材料 光电子学 光学 冶金 地质学 古生物学 图像(数学) 人工智能 计算机科学 物理 工程类 沉积物
作者
David Vázquez-Cortés,Stoffel D. Janssens,Eliot Fried
出处
期刊:Carbon [Elsevier]
卷期号:228: 119298-119298 被引量:4
标识
DOI:10.1016/j.carbon.2024.119298
摘要

Controlling the morphology of polycrystalline diamond (PCD) films is crucial for various applications, including thermal management and quantum sensors. PCD films are typically produced by plasma-enhanced chemical vapor deposition on substrates seeded with nanodiamonds. Different film morphologies can be achieved by controlling growth rates of crystal-forming facets, which is commonly achieved through deposition temperature and hydrocarbon concentration in the plasma. However, the impact of seed density on film morphology remains largely unexplored. In this study, we observed that reducing seed density on silicon substrates has a similar effect on PCD film morphology as increasing hydrocarbon concentration in the plasma. Specifically, as seed density decreases, deposition rate increases, and film texture transitions from (1 1 1) to (1 0 0), followed by the formation of large grains with (1 0 0) facets surrounded by clusters of small grains. These changes were observed using electron microscopy, Raman spectroscopy, and X-ray diffraction. To explain our results, we hypothesize that the silicon–plasma interface surrounding the growing diamond seeds acts as a diamond precursor source. Our proposed explanation requires relatively long precursor migration lengths compared to those assumed in standard diamond deposition theory. Finally, we also propose two new mechanisms for diamond precursor adsorption based on well-established physical phenomena and recent publications. Our findings may open new avenues in diamond research, applicable not only to polycrystalline but also to single-crystal diamond deposition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
慕容雅柏发布了新的文献求助10
1秒前
充电宝应助xyd采纳,获得10
1秒前
优秀少年发布了新的文献求助10
2秒前
5秒前
巴西琉斯发布了新的文献求助10
5秒前
搜集达人应助ni采纳,获得10
5秒前
桐桐应助卷豆碱采纳,获得10
6秒前
Uuuuuuumi完成签到 ,获得积分10
7秒前
7秒前
7秒前
东箭南金发布了新的文献求助30
8秒前
青峰发布了新的文献求助10
9秒前
珈小羽完成签到,获得积分10
9秒前
活力夜白完成签到,获得积分10
10秒前
糖发人完成签到 ,获得积分10
10秒前
tian完成签到 ,获得积分10
10秒前
11秒前
lalala应助大力的无声采纳,获得20
11秒前
CipherSage应助阳佟万言采纳,获得10
12秒前
ni完成签到,获得积分10
12秒前
活力夜白发布了新的文献求助10
13秒前
PENG应助cc采纳,获得10
13秒前
xyd发布了新的文献求助10
15秒前
青峰完成签到,获得积分10
15秒前
领导范儿应助安然采纳,获得10
15秒前
18秒前
19秒前
20秒前
旋转木马9个完成签到 ,获得积分10
20秒前
善学以致用应助安然采纳,获得10
21秒前
最棒哒完成签到 ,获得积分10
21秒前
科目三应助Daniel.Wu采纳,获得10
22秒前
23秒前
23秒前
23秒前
zhoahai完成签到,获得积分10
23秒前
伟大人物完成签到,获得积分10
25秒前
达古冰川发布了新的文献求助10
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073149
关于积分的说明 9129737
捐赠科研通 2764836
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009