Point cloud denoising by reduction of ranging error in laser incidence direction

测距 降噪 噪音(视频) 计算机科学 点云 算法 激光扫描 激光雷达 激光器 计算机视觉 人工智能 光学 物理 电信 图像(数学)
作者
Haitong Sui,Ying Cui
标识
DOI:10.1117/12.3030755
摘要

Laser scanning technology is gradually being used in tunnel 3d modeling and deformation monitoring to assist in tunnel construction and operation and maintenance management. After laser scanning tunnels, point cloud denoising is an important part of point cloud processing. Nevertheless, current statistical-based point cloud denoising algorithms can cause some point cloud information loss, resulting in voids or distortions in the tunnel monitoring area. In this paper, the characteristics of point cloud noise are revealed by analyzing the plane data set obtained from the experiment. And according to the point cloud noise characteristics, a new point cloud denoising algorithm is proposed from the perspective of point cloud noise generation rather than a statistical calculation method. It is found that point cloud noise is mainly caused by the ranging error along the laser incidence direction. The point cloud corresponds to a more consistent performance of the laser incidence angle, which has less influence on the point cloud noise. The point cloud denoising reduces the ranging error along the laser incidence direction. This denoising algorithm, derived from the principle of point cloud noise generation instead of the conventional statistical noise reduction method, provides a noise reduction perspective for point cloud noise reduction. Furthermore, this denoising algorithm substitutes the original sampling point with a point located on its laser ray. This point is specifically identified as the intersection of the laser ray of the sampling point and the plane fitted with its neighboring points. This algorithm employs the newly sampled point in place of the original point cloud, thereby preserving the information within the point cloud. It is also capable of executing multiple noise reduction procedures on the point cloud, with the most significant effects observed in the first three iterations. This method is particularly appropriate for measurements that demand high sensitivity to original data, such as tunnel deformation monitoring and heritage detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一期一会发布了新的文献求助30
1秒前
英俊皮卡丘完成签到,获得积分10
1秒前
NexusExplorer应助芋头采纳,获得10
2秒前
任某人完成签到,获得积分10
3秒前
小叶同学完成签到,获得积分10
3秒前
勇敢的心发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
Arlene完成签到 ,获得积分10
5秒前
Aryan关注了科研通微信公众号
5秒前
6秒前
6秒前
6秒前
hokin33完成签到,获得积分10
7秒前
小马甲应助菜菜mm采纳,获得10
7秒前
jyk发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
杏杏发布了新的文献求助10
9秒前
笨笨忘幽关注了科研通微信公众号
9秒前
张一一完成签到,获得积分10
10秒前
惜肉龟发布了新的文献求助10
10秒前
10秒前
11秒前
aloopp发布了新的文献求助10
11秒前
11秒前
慕青应助鳗鱼铸海采纳,获得10
12秒前
乐乐应助英俊皮卡丘采纳,获得10
12秒前
思源应助聪慧的雪糕采纳,获得10
13秒前
Ava应助高天雨采纳,获得20
13秒前
yyang发布了新的文献求助10
13秒前
xn发布了新的文献求助10
14秒前
XinChenLee完成签到,获得积分10
14秒前
15秒前
NexusExplorer应助沉静的代桃采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300