Point cloud denoising by reduction of ranging error in laser incidence direction

测距 降噪 噪音(视频) 计算机科学 点云 算法 激光扫描 激光雷达 激光器 计算机视觉 人工智能 光学 物理 电信 图像(数学)
作者
Haitong Sui,Ying Cui
标识
DOI:10.1117/12.3030755
摘要

Laser scanning technology is gradually being used in tunnel 3d modeling and deformation monitoring to assist in tunnel construction and operation and maintenance management. After laser scanning tunnels, point cloud denoising is an important part of point cloud processing. Nevertheless, current statistical-based point cloud denoising algorithms can cause some point cloud information loss, resulting in voids or distortions in the tunnel monitoring area. In this paper, the characteristics of point cloud noise are revealed by analyzing the plane data set obtained from the experiment. And according to the point cloud noise characteristics, a new point cloud denoising algorithm is proposed from the perspective of point cloud noise generation rather than a statistical calculation method. It is found that point cloud noise is mainly caused by the ranging error along the laser incidence direction. The point cloud corresponds to a more consistent performance of the laser incidence angle, which has less influence on the point cloud noise. The point cloud denoising reduces the ranging error along the laser incidence direction. This denoising algorithm, derived from the principle of point cloud noise generation instead of the conventional statistical noise reduction method, provides a noise reduction perspective for point cloud noise reduction. Furthermore, this denoising algorithm substitutes the original sampling point with a point located on its laser ray. This point is specifically identified as the intersection of the laser ray of the sampling point and the plane fitted with its neighboring points. This algorithm employs the newly sampled point in place of the original point cloud, thereby preserving the information within the point cloud. It is also capable of executing multiple noise reduction procedures on the point cloud, with the most significant effects observed in the first three iterations. This method is particularly appropriate for measurements that demand high sensitivity to original data, such as tunnel deformation monitoring and heritage detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助一只小羊采纳,获得10
刚刚
小米完成签到,获得积分20
1秒前
zwc发布了新的文献求助10
1秒前
wuyun9653发布了新的文献求助10
1秒前
1秒前
2秒前
丁鹏笑完成签到 ,获得积分0
3秒前
wQ1ng应助维洛尼亚采纳,获得10
3秒前
111完成签到,获得积分20
3秒前
4秒前
6秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
严逍遥应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得30
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
严逍遥应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
9秒前
ceeray23应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
9秒前
然大宝发布了新的文献求助10
9秒前
佳儿完成签到,获得积分10
10秒前
11秒前
Fingerprints完成签到 ,获得积分10
11秒前
12秒前
曹亚伟发布了新的文献求助10
12秒前
12秒前
YAO发布了新的文献求助10
15秒前
chen发布了新的文献求助10
15秒前
bkagyin应助杰bro采纳,获得10
15秒前
1218完成签到 ,获得积分10
18秒前
CC发布了新的文献求助10
18秒前
hongxuezhi完成签到,获得积分10
19秒前
19秒前
wQ1ng应助777采纳,获得10
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208961
求助须知:如何正确求助?哪些是违规求助? 4386288
关于积分的说明 13660545
捐赠科研通 4245343
什么是DOI,文献DOI怎么找? 2329238
邀请新用户注册赠送积分活动 1327077
关于科研通互助平台的介绍 1279355