Point cloud denoising by reduction of ranging error in laser incidence direction

测距 降噪 噪音(视频) 计算机科学 点云 算法 激光扫描 激光雷达 激光器 计算机视觉 人工智能 光学 物理 电信 图像(数学)
作者
Haitong Sui,Ying Cui
标识
DOI:10.1117/12.3030755
摘要

Laser scanning technology is gradually being used in tunnel 3d modeling and deformation monitoring to assist in tunnel construction and operation and maintenance management. After laser scanning tunnels, point cloud denoising is an important part of point cloud processing. Nevertheless, current statistical-based point cloud denoising algorithms can cause some point cloud information loss, resulting in voids or distortions in the tunnel monitoring area. In this paper, the characteristics of point cloud noise are revealed by analyzing the plane data set obtained from the experiment. And according to the point cloud noise characteristics, a new point cloud denoising algorithm is proposed from the perspective of point cloud noise generation rather than a statistical calculation method. It is found that point cloud noise is mainly caused by the ranging error along the laser incidence direction. The point cloud corresponds to a more consistent performance of the laser incidence angle, which has less influence on the point cloud noise. The point cloud denoising reduces the ranging error along the laser incidence direction. This denoising algorithm, derived from the principle of point cloud noise generation instead of the conventional statistical noise reduction method, provides a noise reduction perspective for point cloud noise reduction. Furthermore, this denoising algorithm substitutes the original sampling point with a point located on its laser ray. This point is specifically identified as the intersection of the laser ray of the sampling point and the plane fitted with its neighboring points. This algorithm employs the newly sampled point in place of the original point cloud, thereby preserving the information within the point cloud. It is also capable of executing multiple noise reduction procedures on the point cloud, with the most significant effects observed in the first three iterations. This method is particularly appropriate for measurements that demand high sensitivity to original data, such as tunnel deformation monitoring and heritage detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助嘻嘻采纳,获得10
刚刚
急需文献开题的研一肿瘤学牛马完成签到,获得积分10
刚刚
AHR发布了新的文献求助10
刚刚
慕青应助风的忧伤采纳,获得10
刚刚
deepseek完成签到,获得积分20
刚刚
大漂亮完成签到,获得积分20
刚刚
刘培恒完成签到,获得积分10
刚刚
1秒前
光亮面包发布了新的文献求助10
1秒前
1秒前
小巧小丸子完成签到,获得积分10
1秒前
负责的凌波完成签到,获得积分0
1秒前
平淡爆米花完成签到,获得积分10
1秒前
1秒前
耶耶完成签到 ,获得积分10
1秒前
小炮发布了新的文献求助10
2秒前
慕玖淇发布了新的文献求助10
2秒前
Xia发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
浮游应助语芙采纳,获得10
4秒前
丘比特应助胡重威采纳,获得10
5秒前
5秒前
5秒前
6秒前
husi发布了新的文献求助10
6秒前
6秒前
橓厉发布了新的文献求助10
7秒前
浮游应助初雪采纳,获得10
7秒前
7秒前
谷歌完成签到,获得积分10
7秒前
wangzhikai完成签到,获得积分10
7秒前
香蕉觅云应助yang采纳,获得10
8秒前
8秒前
戴冬梅发布了新的文献求助10
8秒前
完美世界应助优秀藏鸟采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512879
求助须知:如何正确求助?哪些是违规求助? 4607280
关于积分的说明 14504084
捐赠科研通 4542710
什么是DOI,文献DOI怎么找? 2489172
邀请新用户注册赠送积分活动 1471230
关于科研通互助平台的介绍 1443251