Point cloud denoising by reduction of ranging error in laser incidence direction

测距 降噪 噪音(视频) 计算机科学 点云 算法 激光扫描 激光雷达 激光器 计算机视觉 人工智能 光学 物理 电信 图像(数学)
作者
Haitong Sui,Ying Cui
标识
DOI:10.1117/12.3030755
摘要

Laser scanning technology is gradually being used in tunnel 3d modeling and deformation monitoring to assist in tunnel construction and operation and maintenance management. After laser scanning tunnels, point cloud denoising is an important part of point cloud processing. Nevertheless, current statistical-based point cloud denoising algorithms can cause some point cloud information loss, resulting in voids or distortions in the tunnel monitoring area. In this paper, the characteristics of point cloud noise are revealed by analyzing the plane data set obtained from the experiment. And according to the point cloud noise characteristics, a new point cloud denoising algorithm is proposed from the perspective of point cloud noise generation rather than a statistical calculation method. It is found that point cloud noise is mainly caused by the ranging error along the laser incidence direction. The point cloud corresponds to a more consistent performance of the laser incidence angle, which has less influence on the point cloud noise. The point cloud denoising reduces the ranging error along the laser incidence direction. This denoising algorithm, derived from the principle of point cloud noise generation instead of the conventional statistical noise reduction method, provides a noise reduction perspective for point cloud noise reduction. Furthermore, this denoising algorithm substitutes the original sampling point with a point located on its laser ray. This point is specifically identified as the intersection of the laser ray of the sampling point and the plane fitted with its neighboring points. This algorithm employs the newly sampled point in place of the original point cloud, thereby preserving the information within the point cloud. It is also capable of executing multiple noise reduction procedures on the point cloud, with the most significant effects observed in the first three iterations. This method is particularly appropriate for measurements that demand high sensitivity to original data, such as tunnel deformation monitoring and heritage detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
goodidea发布了新的文献求助10
1秒前
浮游应助高大的万恶采纳,获得10
2秒前
4秒前
4秒前
zzz发布了新的文献求助10
4秒前
5秒前
祖乐松完成签到,获得积分10
5秒前
青青儿发布了新的文献求助10
5秒前
taiyan完成签到,获得积分10
6秒前
李健的粉丝团团长应助TNU采纳,获得10
6秒前
海风吹过小镇完成签到 ,获得积分10
6秒前
十津川哈哈哈完成签到,获得积分10
6秒前
wanci应助神外魔法师采纳,获得30
7秒前
苍蓝所栖发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
感动又晴发布了新的文献求助10
9秒前
安详晓亦发布了新的文献求助10
9秒前
司徒绮发布了新的文献求助10
9秒前
9秒前
YK完成签到,获得积分10
10秒前
Gauss应助科研通管家采纳,获得20
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
Xinxxx应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
Xinxxx应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
大快朵颐发福完成签到,获得积分10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
只争朝夕应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265