Point cloud denoising by reduction of ranging error in laser incidence direction

测距 降噪 噪音(视频) 计算机科学 点云 算法 激光扫描 激光雷达 激光器 计算机视觉 人工智能 光学 物理 电信 图像(数学)
作者
Haitong Sui,Ying Cui
标识
DOI:10.1117/12.3030755
摘要

Laser scanning technology is gradually being used in tunnel 3d modeling and deformation monitoring to assist in tunnel construction and operation and maintenance management. After laser scanning tunnels, point cloud denoising is an important part of point cloud processing. Nevertheless, current statistical-based point cloud denoising algorithms can cause some point cloud information loss, resulting in voids or distortions in the tunnel monitoring area. In this paper, the characteristics of point cloud noise are revealed by analyzing the plane data set obtained from the experiment. And according to the point cloud noise characteristics, a new point cloud denoising algorithm is proposed from the perspective of point cloud noise generation rather than a statistical calculation method. It is found that point cloud noise is mainly caused by the ranging error along the laser incidence direction. The point cloud corresponds to a more consistent performance of the laser incidence angle, which has less influence on the point cloud noise. The point cloud denoising reduces the ranging error along the laser incidence direction. This denoising algorithm, derived from the principle of point cloud noise generation instead of the conventional statistical noise reduction method, provides a noise reduction perspective for point cloud noise reduction. Furthermore, this denoising algorithm substitutes the original sampling point with a point located on its laser ray. This point is specifically identified as the intersection of the laser ray of the sampling point and the plane fitted with its neighboring points. This algorithm employs the newly sampled point in place of the original point cloud, thereby preserving the information within the point cloud. It is also capable of executing multiple noise reduction procedures on the point cloud, with the most significant effects observed in the first three iterations. This method is particularly appropriate for measurements that demand high sensitivity to original data, such as tunnel deformation monitoring and heritage detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MADKAI发布了新的文献求助10
1秒前
1秒前
李健的小迷弟应助111采纳,获得10
2秒前
Accept应助wintercyan采纳,获得20
2秒前
哲999完成签到,获得积分10
2秒前
Mian完成签到,获得积分10
2秒前
3秒前
3秒前
于嗣濠完成签到 ,获得积分10
3秒前
36456657应助CC采纳,获得10
3秒前
优雅山柏发布了新的文献求助10
4秒前
Jacky完成签到,获得积分10
4秒前
脑洞疼应助无情的白桃采纳,获得10
4秒前
mm发布了新的文献求助10
4秒前
5秒前
5秒前
zoko发布了新的文献求助10
5秒前
5秒前
曾经的臻发布了新的文献求助10
5秒前
华仔应助S1mple_gentleman采纳,获得10
5秒前
科研通AI5应助CC采纳,获得10
5秒前
5秒前
6秒前
6秒前
张静静完成签到,获得积分10
7秒前
7秒前
震666发布了新的文献求助30
7秒前
MADKAI发布了新的文献求助10
7秒前
7秒前
117发布了新的文献求助10
7秒前
8秒前
8秒前
酶没美镁完成签到,获得积分10
8秒前
小二郎应助Rui采纳,获得10
8秒前
Libra完成签到,获得积分10
9秒前
雪儿发布了新的文献求助30
9秒前
无悔呀发布了新的文献求助10
9秒前
小巧的可仁完成签到 ,获得积分10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740