Point cloud denoising by reduction of ranging error in laser incidence direction

测距 降噪 噪音(视频) 计算机科学 点云 算法 激光扫描 激光雷达 激光器 计算机视觉 人工智能 光学 物理 电信 图像(数学)
作者
Haitong Sui,Ying Cui
标识
DOI:10.1117/12.3030755
摘要

Laser scanning technology is gradually being used in tunnel 3d modeling and deformation monitoring to assist in tunnel construction and operation and maintenance management. After laser scanning tunnels, point cloud denoising is an important part of point cloud processing. Nevertheless, current statistical-based point cloud denoising algorithms can cause some point cloud information loss, resulting in voids or distortions in the tunnel monitoring area. In this paper, the characteristics of point cloud noise are revealed by analyzing the plane data set obtained from the experiment. And according to the point cloud noise characteristics, a new point cloud denoising algorithm is proposed from the perspective of point cloud noise generation rather than a statistical calculation method. It is found that point cloud noise is mainly caused by the ranging error along the laser incidence direction. The point cloud corresponds to a more consistent performance of the laser incidence angle, which has less influence on the point cloud noise. The point cloud denoising reduces the ranging error along the laser incidence direction. This denoising algorithm, derived from the principle of point cloud noise generation instead of the conventional statistical noise reduction method, provides a noise reduction perspective for point cloud noise reduction. Furthermore, this denoising algorithm substitutes the original sampling point with a point located on its laser ray. This point is specifically identified as the intersection of the laser ray of the sampling point and the plane fitted with its neighboring points. This algorithm employs the newly sampled point in place of the original point cloud, thereby preserving the information within the point cloud. It is also capable of executing multiple noise reduction procedures on the point cloud, with the most significant effects observed in the first three iterations. This method is particularly appropriate for measurements that demand high sensitivity to original data, such as tunnel deformation monitoring and heritage detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助搞怪的大侠采纳,获得10
刚刚
赘婿应助LG采纳,获得20
1秒前
高翔发布了新的文献求助10
1秒前
1秒前
wuhan完成签到,获得积分10
2秒前
Lee发布了新的文献求助10
3秒前
3秒前
小吴同学完成签到,获得积分20
5秒前
还得学啊完成签到,获得积分10
5秒前
个性的荆应助one采纳,获得10
5秒前
6秒前
6秒前
肖肖完成签到,获得积分10
7秒前
JamesPei应助photodetectors采纳,获得10
7秒前
8秒前
9秒前
10秒前
Lee完成签到,获得积分10
10秒前
英俊的铭应助sy193625采纳,获得10
11秒前
11秒前
刀特左完成签到,获得积分10
12秒前
琳io发布了新的文献求助10
12秒前
柚子茶完成签到,获得积分10
13秒前
13秒前
CNS完成签到 ,获得积分10
13秒前
ikun发布了新的文献求助10
13秒前
kouxinyao完成签到 ,获得积分10
14秒前
鹤九完成签到,获得积分10
14秒前
无恙发布了新的文献求助10
15秒前
Jackson_Cheng完成签到,获得积分20
15秒前
16秒前
童0731完成签到,获得积分10
17秒前
18秒前
天上的大馅饼完成签到,获得积分10
18秒前
SciGPT应助小白采纳,获得10
18秒前
18秒前
科研通AI6应助令和采纳,获得10
19秒前
小二郎应助炙热草丛采纳,获得10
20秒前
21秒前
JamesPei应助天上的大馅饼采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642142
求助须知:如何正确求助?哪些是违规求助? 4758300
关于积分的说明 15016687
捐赠科研通 4800688
什么是DOI,文献DOI怎么找? 2566186
邀请新用户注册赠送积分活动 1524265
关于科研通互助平台的介绍 1483901