已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Point cloud denoising by reduction of ranging error in laser incidence direction

测距 降噪 噪音(视频) 计算机科学 点云 算法 激光扫描 激光雷达 激光器 计算机视觉 人工智能 光学 物理 电信 图像(数学)
作者
Haitong Sui,Ying Cui
标识
DOI:10.1117/12.3030755
摘要

Laser scanning technology is gradually being used in tunnel 3d modeling and deformation monitoring to assist in tunnel construction and operation and maintenance management. After laser scanning tunnels, point cloud denoising is an important part of point cloud processing. Nevertheless, current statistical-based point cloud denoising algorithms can cause some point cloud information loss, resulting in voids or distortions in the tunnel monitoring area. In this paper, the characteristics of point cloud noise are revealed by analyzing the plane data set obtained from the experiment. And according to the point cloud noise characteristics, a new point cloud denoising algorithm is proposed from the perspective of point cloud noise generation rather than a statistical calculation method. It is found that point cloud noise is mainly caused by the ranging error along the laser incidence direction. The point cloud corresponds to a more consistent performance of the laser incidence angle, which has less influence on the point cloud noise. The point cloud denoising reduces the ranging error along the laser incidence direction. This denoising algorithm, derived from the principle of point cloud noise generation instead of the conventional statistical noise reduction method, provides a noise reduction perspective for point cloud noise reduction. Furthermore, this denoising algorithm substitutes the original sampling point with a point located on its laser ray. This point is specifically identified as the intersection of the laser ray of the sampling point and the plane fitted with its neighboring points. This algorithm employs the newly sampled point in place of the original point cloud, thereby preserving the information within the point cloud. It is also capable of executing multiple noise reduction procedures on the point cloud, with the most significant effects observed in the first three iterations. This method is particularly appropriate for measurements that demand high sensitivity to original data, such as tunnel deformation monitoring and heritage detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
L1完成签到 ,获得积分10
1秒前
小昭完成签到,获得积分10
2秒前
汉堡包应助畅快的书雪采纳,获得10
2秒前
年少轻狂最情深完成签到 ,获得积分10
3秒前
5秒前
samky完成签到,获得积分10
8秒前
朴素苑睐完成签到 ,获得积分10
8秒前
9秒前
奔跑石小猛完成签到,获得积分10
10秒前
朴素苑睐关注了科研通微信公众号
12秒前
思源应助远枫orz采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
17秒前
Gun完成签到,获得积分10
18秒前
科研通AI2S应助vivi采纳,获得10
18秒前
小巧怀薇完成签到,获得积分10
21秒前
22秒前
24秒前
StonesKing完成签到,获得积分20
25秒前
ccm应助阿Q采纳,获得30
25秒前
清秀灵薇完成签到,获得积分10
25秒前
siji发布了新的文献求助10
26秒前
28秒前
29秒前
StonesKing发布了新的文献求助10
34秒前
36秒前
Viiigo完成签到,获得积分10
37秒前
小二郎应助siji采纳,获得10
38秒前
羊羊完成签到 ,获得积分10
41秒前
41秒前
丹丹子完成签到 ,获得积分10
42秒前
lynn完成签到,获得积分10
44秒前
44秒前
45秒前
归尘发布了新的文献求助10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418147
求助须知:如何正确求助?哪些是违规求助? 4533868
关于积分的说明 14142681
捐赠科研通 4450148
什么是DOI,文献DOI怎么找? 2441102
邀请新用户注册赠送积分活动 1432858
关于科研通互助平台的介绍 1410079