Point cloud denoising by reduction of ranging error in laser incidence direction

测距 降噪 噪音(视频) 计算机科学 点云 算法 激光扫描 激光雷达 激光器 计算机视觉 人工智能 光学 物理 电信 图像(数学)
作者
Haitong Sui,Ying Cui
标识
DOI:10.1117/12.3030755
摘要

Laser scanning technology is gradually being used in tunnel 3d modeling and deformation monitoring to assist in tunnel construction and operation and maintenance management. After laser scanning tunnels, point cloud denoising is an important part of point cloud processing. Nevertheless, current statistical-based point cloud denoising algorithms can cause some point cloud information loss, resulting in voids or distortions in the tunnel monitoring area. In this paper, the characteristics of point cloud noise are revealed by analyzing the plane data set obtained from the experiment. And according to the point cloud noise characteristics, a new point cloud denoising algorithm is proposed from the perspective of point cloud noise generation rather than a statistical calculation method. It is found that point cloud noise is mainly caused by the ranging error along the laser incidence direction. The point cloud corresponds to a more consistent performance of the laser incidence angle, which has less influence on the point cloud noise. The point cloud denoising reduces the ranging error along the laser incidence direction. This denoising algorithm, derived from the principle of point cloud noise generation instead of the conventional statistical noise reduction method, provides a noise reduction perspective for point cloud noise reduction. Furthermore, this denoising algorithm substitutes the original sampling point with a point located on its laser ray. This point is specifically identified as the intersection of the laser ray of the sampling point and the plane fitted with its neighboring points. This algorithm employs the newly sampled point in place of the original point cloud, thereby preserving the information within the point cloud. It is also capable of executing multiple noise reduction procedures on the point cloud, with the most significant effects observed in the first three iterations. This method is particularly appropriate for measurements that demand high sensitivity to original data, such as tunnel deformation monitoring and heritage detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Justtry完成签到,获得积分10
1秒前
自转无风发布了新的文献求助10
2秒前
缓慢白曼完成签到 ,获得积分10
2秒前
道交法完成签到,获得积分10
2秒前
星星完成签到,获得积分10
2秒前
2秒前
从今伴君行完成签到,获得积分10
3秒前
听风完成签到,获得积分10
4秒前
悦耳冰蓝完成签到,获得积分10
5秒前
汉堡包应助韭菜采纳,获得10
5秒前
bzdqsm完成签到,获得积分10
5秒前
老实访波发布了新的文献求助30
6秒前
yangy115完成签到,获得积分10
7秒前
外向的斑马完成签到 ,获得积分10
7秒前
Owen应助听风采纳,获得10
8秒前
岑夜南完成签到,获得积分10
8秒前
豆子完成签到,获得积分10
10秒前
时尚雨兰完成签到,获得积分10
13秒前
14秒前
高大绝义完成签到,获得积分10
14秒前
书生也是小郎中完成签到 ,获得积分10
16秒前
研ZZ完成签到,获得积分10
18秒前
光亮萤完成签到,获得积分10
18秒前
19秒前
木光发布了新的文献求助10
19秒前
漂亮夏兰完成签到 ,获得积分10
19秒前
chrysan完成签到,获得积分10
20秒前
千玺的小粉丝儿完成签到,获得积分10
20秒前
无味完成签到,获得积分10
21秒前
22秒前
韭菜发布了新的文献求助10
23秒前
xrkxrk完成签到 ,获得积分10
26秒前
chenjun7080完成签到,获得积分10
26秒前
斯文如娆完成签到 ,获得积分10
27秒前
茶果完成签到,获得积分10
28秒前
杳鸢应助韭菜采纳,获得10
29秒前
lxhhh完成签到,获得积分10
30秒前
郭义敏完成签到,获得积分0
30秒前
YYY完成签到,获得积分10
31秒前
Tonald Yang完成签到,获得积分20
34秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
Ultrasound-guided bilateral erector spinae plane block in the management of postoperative analgesia in living liver donors: a randomized, prospective study 400
Functional Syntax Handbook: Analyzing English at the Level of Form (作者 Robin Fawcett ) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3215757
求助须知:如何正确求助?哪些是违规求助? 2864421
关于积分的说明 8142427
捐赠科研通 2530650
什么是DOI,文献DOI怎么找? 1364792
科研通“疑难数据库(出版商)”最低求助积分说明 644293
邀请新用户注册赠送积分活动 616852