Deep learning in the precise assessment of primary Sjögren's Syndrome based on ultrasound images

医学 队列 前瞻性队列研究 超声波 灰度 核医学 放射科 内科学 人工智能 像素 计算机科学
作者
Xinyue Niu,Yujie Zhou,Jin Xu,Xue Qin,Xiaoyan Xu,Jia Li,Ling Wang,Tianyu Tang
出处
期刊:Rheumatology [Oxford University Press]
标识
DOI:10.1093/rheumatology/keae312
摘要

Abstract Objectives This study aimed to investigate the value of a deep learning (DL) model based on greyscale ultrasound (US) images for precise assessment and accurate diagnosis of primary Sjögren’s syndrome (pSS). Methods This was a multicentre prospective analysis. All pSS patients were diagnosed according to 2016 ACR/EULAR criteria. A total of 72 pSS patients and 72 sex- and age-matched healthy controls recruited between January 2022 and April 2023, together with 41 patients and 41 healthy controls recruited from June 2023 to February 2024 were used for DL model development and validation, respectively. The DL model was constructed based on the ResNet 50 input with preprocessed all participants’ bilateral submandibular glands (SMGs), parotid glands (PGs), and lacrimal glands (LGs) greyscale US images. Diagnostic performance of the model was compared with two radiologists. The accuracy of prediction and identification performance of DL model were evaluated by calibration curve. Results A total of 864 and 164 greyscale US images of SMGs, PGs, and LGs were collected for development and validation of the model. The area under the ROC (AUCs) of DL model in the SMGs, PGs, and LGs were 0.92, 0.93, 0.91 in the model cohort, and were 0.90, 0.88, 0.87 in the validation cohort, respectively, outperforming both radiologists. Calibration curves showed the prediction probability of the DL model was consistent with the actual probability in both model cohort and validation cohort. Conclusion The DL model based on greyscale US images showed diagnostic potential in the precise assessment of pSS patients in the SMGs, PGs and LGs, outperforming conventional radiologist evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子fy16_发布了新的文献求助10
刚刚
cookie完成签到,获得积分10
刚刚
柒柒的小熊完成签到,获得积分10
1秒前
1秒前
Hello应助萌之痴痴采纳,获得10
2秒前
hahaer完成签到,获得积分10
4秒前
领导范儿应助失眠虔纹采纳,获得10
5秒前
6秒前
Owen应助凝子老师采纳,获得10
9秒前
9秒前
南宫炽滔完成签到 ,获得积分10
11秒前
11秒前
丘比特应助飞羽采纳,获得10
12秒前
沙拉发布了新的文献求助10
12秒前
13秒前
14秒前
椰子糖完成签到 ,获得积分10
15秒前
15秒前
ZHU完成签到,获得积分10
16秒前
阳阳发布了新的文献求助10
17秒前
Raymond应助雪山飞龙采纳,获得10
17秒前
kk发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
19秒前
20秒前
23秒前
果果瑞宁发布了新的文献求助10
23秒前
wewewew发布了新的文献求助10
23秒前
23秒前
打打应助沙拉采纳,获得10
23秒前
24秒前
诸笑白发布了新的文献求助10
25秒前
丹丹完成签到 ,获得积分10
25秒前
kk完成签到,获得积分10
25秒前
26秒前
caoyy发布了新的文献求助10
26秒前
27秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849