The Role of Transition Metal Versus Coordination Mode in Single-Atom Catalyst for Electrocatalytic Sulfur Reduction Reaction

材料科学 催化作用 过渡金属 硫黄 Atom(片上系统) 还原(数学) 电催化剂 金属 无机化学 电化学 物理化学 冶金 有机化学 电极 化学 几何学 数学 计算机科学 嵌入式系统
作者
Wentao Zhang,Gaoshang Zhang,Jiabin Ma,Zhaotian Xie,Ziyao Gao,Kuang Yu,Lele Peng
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:2
标识
DOI:10.1021/acsami.4c01811
摘要

Electrocatalytic sulfur reduction reaction (SRR) is emerging as an effective strategy to combat the polysulfide shuttling effect, which remains a critical factor impeding the practical application of the Li–S battery. Single-atom catalyst (SAC), one of the most studied catalytic materials, has shown considerable potential in addressing the polysulfide shuttling effect in a Li–S battery. However, the role played by transition metal vs coordination mode in electrocatalytic SRR is trial-and-error, and the general understanding that guides the synthesis of the specific SAC with desired property remains elusive. Herein, we use first-principles calculations and machine learning to screen a comprehensive data set of graphene-based SACs with different transition metals, heteroatom doping, and coordination modes. The results reveal that the type of transition metal plays the decisive role in SAC for electrocatalytic SRR, rather than the coordination mode. Specifically, the 3d transition metals exhibit admirable electrocatalytic SRR activity for all of the coordination modes. Compared with the reported N3C1 and N4 coordinated graphene-based SACs covering 3d, 4d, and 5d transition metals, the proposed para-MnO2C2 and para-FeN2C2 possess significant advantages on the electrocatalytic SRR, including a considerably low overpotential down to 1 mV and reduced Li2S decomposition energy barrier, both suggesting an accelerated conversion process among the polysulfides. This study may clarify some understanding of the role played by transition metal vs coordination mode for SAC materials with specific structure and desired catalytic properties toward electrocatalytic SRR and beyond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lapland完成签到,获得积分20
1秒前
梅子完成签到 ,获得积分10
1秒前
pikopiko完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
慈祥的乔发布了新的文献求助10
2秒前
2秒前
大个应助猪猪hero采纳,获得10
2秒前
2秒前
一二完成签到,获得积分10
3秒前
Yang完成签到,获得积分10
3秒前
大个应助wpf7848采纳,获得10
3秒前
summer发布了新的文献求助30
3秒前
3秒前
英姑应助纪诗筠采纳,获得10
3秒前
研友_VZG7GZ应助那就来吧采纳,获得10
4秒前
4秒前
Duckseid完成签到,获得积分10
4秒前
William完成签到,获得积分10
4秒前
ii童歌完成签到,获得积分10
5秒前
fgh发布了新的文献求助10
5秒前
科研通AI6应助徐徐俊采纳,获得10
5秒前
5秒前
义气的面包完成签到,获得积分10
5秒前
Sean发布了新的文献求助10
6秒前
科研顺利发布了新的文献求助10
8秒前
科研通AI2S应助czx采纳,获得10
8秒前
andrele应助多熬夜采纳,获得10
8秒前
mada完成签到,获得积分10
8秒前
不想做实验完成签到,获得积分10
8秒前
看不懂完成签到 ,获得积分10
8秒前
七木发布了新的文献求助10
8秒前
emilybei完成签到,获得积分10
9秒前
清爽博超发布了新的文献求助10
9秒前
9秒前
wzg666完成签到,获得积分10
10秒前
深情安青应助执着的一兰采纳,获得10
11秒前
11秒前
SciGPT应助菜园子采纳,获得20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665553
求助须知:如何正确求助?哪些是违规求助? 4877312
关于积分的说明 15114485
捐赠科研通 4824825
什么是DOI,文献DOI怎么找? 2582883
邀请新用户注册赠送积分活动 1536919
关于科研通互助平台的介绍 1495370