Optimizing Wastewater Treatment Plant Operational Efficiency Through Integrating Machine Learning Predictive Models and Advanced Control Strategies

模型预测控制 水准点(测量) 污水处理 流出物 预测建模 计算机科学 前馈 工程类 工艺工程 机器学习 人工智能 控制工程 控制(管理) 环境工程 大地测量学 地理
作者
Aparna K.G.,R. Swarnalatha,Murchana Changmai
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:188: 995-1008
标识
DOI:10.1016/j.psep.2024.05.148
摘要

This research optimizes wastewater treatment plant (WWTP) operational performance by integrating advanced control strategies and predictive modeling. Emphasizing the significance of machine learning (ML), feature extraction techniques (filter, wrapper, and embedded methods) were employed to develop robust prediction models. The random forest (RF) model was applied to predict target variables, effluent ammonia, and nitrogen concentrations. Integrating these predictive models into the WWTP's control system is necessary for enhanced efficiency and pollution regulation. Benchmark Simulation Model 1 (BSM1) was used as the WWTP model. The two tested control strategies included a hybrid approach, combining feedforward and feedback control, resulting in an improved effluent quality index (EQI), a marginal increase in aeration energy (AE) and the operational cost index (OCI), and a significant decrease in effluent ammonia concentration. The second strategy utilized self-organizing fuzzy inference system (SOFIS) control, resulting in promising outcomes with improvements in EQI, ammonia, and nitrogen concentrations, with negligible increases in AE and OCI. The findings highlight the pivotal role of predicting effluent quality parameters and integrating the prediction into WWTP control systems. This integrated approach proves effective in optimizing pollutant regulation and overall system performance. The research provides insights into the practical implementation of ML-based control strategies in wastewater treatment. It offers future scope for exploring advanced ML algorithms and their real-time application in operational WWTPs. This research introduces a novel approach by integrating machine learning with the BSM1 weather dataset and sensor data for feature selection to predict effluent concentrations in a WWTP. Through the comparative analysis with the default proportional-integral (PI) control configuration, the research highlights the importance of integrating machine learning techniques into WWTP control systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
someone发布了新的文献求助10
刚刚
1秒前
专注黄豆发布了新的文献求助10
1秒前
Celine关注了科研通微信公众号
1秒前
1秒前
1秒前
lml520完成签到,获得积分10
2秒前
张三完成签到,获得积分10
2秒前
风驻云停完成签到,获得积分10
2秒前
fagfagsf发布了新的文献求助10
2秒前
合适面包发布了新的文献求助10
2秒前
兰闹儿发布了新的文献求助10
3秒前
李龙龙完成签到,获得积分10
3秒前
陈炜smile完成签到,获得积分10
3秒前
3秒前
量子完成签到,获得积分20
5秒前
5秒前
蟑螂恶霸完成签到,获得积分10
5秒前
liu完成签到 ,获得积分10
6秒前
不配.应助冷公子采纳,获得10
6秒前
6秒前
6秒前
初夏完成签到,获得积分10
7秒前
冰糖葫卢完成签到,获得积分10
7秒前
ptyss发布了新的文献求助10
7秒前
自行车关注了科研通微信公众号
7秒前
sssss发布了新的文献求助10
7秒前
木子发布了新的文献求助10
8秒前
田様应助玛尼采纳,获得10
8秒前
8秒前
9秒前
芜湖发布了新的文献求助10
10秒前
daker发布了新的文献求助10
10秒前
一颗小行星完成签到 ,获得积分10
11秒前
骑着蜗牛追流星完成签到,获得积分10
11秒前
iNk应助linger采纳,获得10
11秒前
希望天下0贩的0应助linger采纳,获得10
11秒前
Jasper应助linger采纳,获得10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147351
求助须知:如何正确求助?哪些是违规求助? 2798580
关于积分的说明 7829767
捐赠科研通 2455324
什么是DOI,文献DOI怎么找? 1306666
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567