亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing Wastewater Treatment Plant Operational Efficiency Through Integrating Machine Learning Predictive Models and Advanced Control Strategies

模型预测控制 水准点(测量) 污水处理 流出物 预测建模 计算机科学 前馈 工程类 工艺工程 机器学习 人工智能 控制工程 控制(管理) 环境工程 大地测量学 地理
作者
Aparna K.G.,R. Swarnalatha,Murchana Changmai
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:188: 995-1008 被引量:4
标识
DOI:10.1016/j.psep.2024.05.148
摘要

This research optimizes wastewater treatment plant (WWTP) operational performance by integrating advanced control strategies and predictive modeling. Emphasizing the significance of machine learning (ML), feature extraction techniques (filter, wrapper, and embedded methods) were employed to develop robust prediction models. The random forest (RF) model was applied to predict target variables, effluent ammonia, and nitrogen concentrations. Integrating these predictive models into the WWTP's control system is necessary for enhanced efficiency and pollution regulation. Benchmark Simulation Model 1 (BSM1) was used as the WWTP model. The two tested control strategies included a hybrid approach, combining feedforward and feedback control, resulting in an improved effluent quality index (EQI), a marginal increase in aeration energy (AE) and the operational cost index (OCI), and a significant decrease in effluent ammonia concentration. The second strategy utilized self-organizing fuzzy inference system (SOFIS) control, resulting in promising outcomes with improvements in EQI, ammonia, and nitrogen concentrations, with negligible increases in AE and OCI. The findings highlight the pivotal role of predicting effluent quality parameters and integrating the prediction into WWTP control systems. This integrated approach proves effective in optimizing pollutant regulation and overall system performance. The research provides insights into the practical implementation of ML-based control strategies in wastewater treatment. It offers future scope for exploring advanced ML algorithms and their real-time application in operational WWTPs. This research introduces a novel approach by integrating machine learning with the BSM1 weather dataset and sensor data for feature selection to predict effluent concentrations in a WWTP. Through the comparative analysis with the default proportional-integral (PI) control configuration, the research highlights the importance of integrating machine learning techniques into WWTP control systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Crystal完成签到,获得积分10
3秒前
7秒前
dingbeicn完成签到,获得积分10
9秒前
ding应助Crystal采纳,获得10
10秒前
痛米完成签到 ,获得积分10
40秒前
ZXneuro完成签到,获得积分10
41秒前
酷波er应助ppwq采纳,获得30
53秒前
Bobo发布了新的文献求助10
58秒前
顾矜应助Eason采纳,获得10
58秒前
科研小南完成签到 ,获得积分10
1分钟前
研友_VZG7GZ应助碧蓝的雅青采纳,获得10
1分钟前
YYL完成签到 ,获得积分10
1分钟前
JoeyJin完成签到,获得积分10
1分钟前
冷酷恶天完成签到 ,获得积分10
1分钟前
1分钟前
CipherSage应助jjyy采纳,获得10
1分钟前
蓝蓝酱发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
freyaaaaa应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
阔达的寒安完成签到,获得积分10
1分钟前
蓝蓝酱完成签到,获得积分10
2分钟前
无花果应助jjyy采纳,获得10
2分钟前
2分钟前
乐乐应助摇叶采纳,获得10
2分钟前
2分钟前
NexusExplorer应助131949采纳,获得10
2分钟前
玩命做研究完成签到 ,获得积分10
2分钟前
2分钟前
思有完成签到 ,获得积分10
2分钟前
许大脚发布了新的文献求助10
2分钟前
2分钟前
131949发布了新的文献求助10
2分钟前
落子狮发布了新的文献求助10
2分钟前
131949完成签到,获得积分20
2分钟前
摇叶完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498263
求助须知:如何正确求助?哪些是违规求助? 4595573
关于积分的说明 14449342
捐赠科研通 4528249
什么是DOI,文献DOI怎么找? 2481441
邀请新用户注册赠送积分活动 1465554
关于科研通互助平台的介绍 1438310