亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing Wastewater Treatment Plant Operational Efficiency Through Integrating Machine Learning Predictive Models and Advanced Control Strategies

模型预测控制 水准点(测量) 污水处理 流出物 预测建模 计算机科学 前馈 工程类 工艺工程 机器学习 人工智能 控制工程 控制(管理) 环境工程 大地测量学 地理
作者
Aparna K.G.,R. Swarnalatha,Murchana Changmai
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:188: 995-1008 被引量:4
标识
DOI:10.1016/j.psep.2024.05.148
摘要

This research optimizes wastewater treatment plant (WWTP) operational performance by integrating advanced control strategies and predictive modeling. Emphasizing the significance of machine learning (ML), feature extraction techniques (filter, wrapper, and embedded methods) were employed to develop robust prediction models. The random forest (RF) model was applied to predict target variables, effluent ammonia, and nitrogen concentrations. Integrating these predictive models into the WWTP's control system is necessary for enhanced efficiency and pollution regulation. Benchmark Simulation Model 1 (BSM1) was used as the WWTP model. The two tested control strategies included a hybrid approach, combining feedforward and feedback control, resulting in an improved effluent quality index (EQI), a marginal increase in aeration energy (AE) and the operational cost index (OCI), and a significant decrease in effluent ammonia concentration. The second strategy utilized self-organizing fuzzy inference system (SOFIS) control, resulting in promising outcomes with improvements in EQI, ammonia, and nitrogen concentrations, with negligible increases in AE and OCI. The findings highlight the pivotal role of predicting effluent quality parameters and integrating the prediction into WWTP control systems. This integrated approach proves effective in optimizing pollutant regulation and overall system performance. The research provides insights into the practical implementation of ML-based control strategies in wastewater treatment. It offers future scope for exploring advanced ML algorithms and their real-time application in operational WWTPs. This research introduces a novel approach by integrating machine learning with the BSM1 weather dataset and sensor data for feature selection to predict effluent concentrations in a WWTP. Through the comparative analysis with the default proportional-integral (PI) control configuration, the research highlights the importance of integrating machine learning techniques into WWTP control systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cardioJA完成签到 ,获得积分20
8秒前
江氏巨颏虎完成签到,获得积分10
19秒前
zy完成签到 ,获得积分10
25秒前
搜集达人应助畅快的毛衣采纳,获得10
27秒前
充电宝应助ahxb采纳,获得10
37秒前
勾勾完成签到 ,获得积分10
39秒前
40秒前
Stone发布了新的文献求助20
48秒前
Blaseaka完成签到 ,获得积分10
56秒前
1分钟前
自律发布了新的文献求助10
1分钟前
Owen应助不安的冰枫092623采纳,获得10
2分钟前
2分钟前
大模型应助爱听歌笑寒采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
汉堡包应助畅快的毛衣采纳,获得10
2分钟前
苜久久完成签到,获得积分10
2分钟前
Lamb完成签到,获得积分10
3分钟前
如意冰枫应助七人七采纳,获得10
3分钟前
小蘑菇应助百里幻竹采纳,获得10
3分钟前
顾矜应助学术大拿采纳,获得10
3分钟前
香蕉觅云应助Lamb采纳,获得10
3分钟前
3分钟前
DrN完成签到,获得积分10
3分钟前
如意冰枫应助七人七采纳,获得10
3分钟前
3分钟前
3分钟前
哈哈发布了新的文献求助10
3分钟前
百里幻竹发布了新的文献求助10
3分钟前
xuanxuan发布了新的文献求助20
3分钟前
花花123发布了新的文献求助10
3分钟前
3分钟前
3分钟前
打打应助百里幻竹采纳,获得10
3分钟前
dzll完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4909968
求助须知:如何正确求助?哪些是违规求助? 4186014
关于积分的说明 12998951
捐赠科研通 3953257
什么是DOI,文献DOI怎么找? 2167844
邀请新用户注册赠送积分活动 1186297
关于科研通互助平台的介绍 1093258