已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimizing Wastewater Treatment Plant Operational Efficiency Through Integrating Machine Learning Predictive Models and Advanced Control Strategies

模型预测控制 水准点(测量) 污水处理 流出物 预测建模 计算机科学 前馈 工程类 工艺工程 机器学习 人工智能 控制工程 控制(管理) 环境工程 大地测量学 地理
作者
Aparna K.G.,R. Swarnalatha,Murchana Changmai
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:188: 995-1008 被引量:4
标识
DOI:10.1016/j.psep.2024.05.148
摘要

This research optimizes wastewater treatment plant (WWTP) operational performance by integrating advanced control strategies and predictive modeling. Emphasizing the significance of machine learning (ML), feature extraction techniques (filter, wrapper, and embedded methods) were employed to develop robust prediction models. The random forest (RF) model was applied to predict target variables, effluent ammonia, and nitrogen concentrations. Integrating these predictive models into the WWTP's control system is necessary for enhanced efficiency and pollution regulation. Benchmark Simulation Model 1 (BSM1) was used as the WWTP model. The two tested control strategies included a hybrid approach, combining feedforward and feedback control, resulting in an improved effluent quality index (EQI), a marginal increase in aeration energy (AE) and the operational cost index (OCI), and a significant decrease in effluent ammonia concentration. The second strategy utilized self-organizing fuzzy inference system (SOFIS) control, resulting in promising outcomes with improvements in EQI, ammonia, and nitrogen concentrations, with negligible increases in AE and OCI. The findings highlight the pivotal role of predicting effluent quality parameters and integrating the prediction into WWTP control systems. This integrated approach proves effective in optimizing pollutant regulation and overall system performance. The research provides insights into the practical implementation of ML-based control strategies in wastewater treatment. It offers future scope for exploring advanced ML algorithms and their real-time application in operational WWTPs. This research introduces a novel approach by integrating machine learning with the BSM1 weather dataset and sensor data for feature selection to predict effluent concentrations in a WWTP. Through the comparative analysis with the default proportional-integral (PI) control configuration, the research highlights the importance of integrating machine learning techniques into WWTP control systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yb完成签到,获得积分10
1秒前
5秒前
CodeCraft应助后会无期采纳,获得10
6秒前
HAI完成签到,获得积分10
7秒前
9秒前
9秒前
一天完成签到 ,获得积分10
9秒前
小点点完成签到,获得积分20
11秒前
科研通AI6应助HAI采纳,获得10
13秒前
汉堡包应助后会无期采纳,获得10
14秒前
万默完成签到 ,获得积分10
15秒前
不要慌完成签到 ,获得积分10
16秒前
犹豫幻丝完成签到,获得积分10
18秒前
18秒前
咕哒猫应助wqiao2010采纳,获得10
18秒前
九珥完成签到 ,获得积分10
19秒前
小豆豆完成签到,获得积分10
21秒前
汉堡包应助科研通管家采纳,获得10
23秒前
Criminology34应助科研通管家采纳,获得10
23秒前
24秒前
jianghs完成签到,获得积分10
24秒前
一只熊完成签到 ,获得积分10
25秒前
28秒前
29秒前
wqiao2010完成签到,获得积分10
29秒前
山楂球发布了新的文献求助10
29秒前
天真的路灯完成签到,获得积分10
31秒前
tong发布了新的文献求助10
31秒前
www完成签到,获得积分10
34秒前
35秒前
lmplzzp完成签到,获得积分10
37秒前
wlei完成签到,获得积分10
38秒前
虾球发布了新的文献求助30
40秒前
lcw1998发布了新的文献求助10
40秒前
41秒前
41秒前
43秒前
Eileen完成签到 ,获得积分0
43秒前
FashionBoy应助科研小巴采纳,获得30
44秒前
楠楠2001完成签到 ,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627676
求助须知:如何正确求助?哪些是违规求助? 4714380
关于积分的说明 14962946
捐赠科研通 4785322
什么是DOI,文献DOI怎么找? 2555072
邀请新用户注册赠送积分活动 1516447
关于科研通互助平台的介绍 1476841