亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing Wastewater Treatment Plant Operational Efficiency Through Integrating Machine Learning Predictive Models and Advanced Control Strategies

模型预测控制 水准点(测量) 污水处理 流出物 预测建模 计算机科学 前馈 工程类 工艺工程 机器学习 人工智能 控制工程 控制(管理) 环境工程 大地测量学 地理
作者
Aparna K.G.,R. Swarnalatha,Murchana Changmai
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:188: 995-1008 被引量:4
标识
DOI:10.1016/j.psep.2024.05.148
摘要

This research optimizes wastewater treatment plant (WWTP) operational performance by integrating advanced control strategies and predictive modeling. Emphasizing the significance of machine learning (ML), feature extraction techniques (filter, wrapper, and embedded methods) were employed to develop robust prediction models. The random forest (RF) model was applied to predict target variables, effluent ammonia, and nitrogen concentrations. Integrating these predictive models into the WWTP's control system is necessary for enhanced efficiency and pollution regulation. Benchmark Simulation Model 1 (BSM1) was used as the WWTP model. The two tested control strategies included a hybrid approach, combining feedforward and feedback control, resulting in an improved effluent quality index (EQI), a marginal increase in aeration energy (AE) and the operational cost index (OCI), and a significant decrease in effluent ammonia concentration. The second strategy utilized self-organizing fuzzy inference system (SOFIS) control, resulting in promising outcomes with improvements in EQI, ammonia, and nitrogen concentrations, with negligible increases in AE and OCI. The findings highlight the pivotal role of predicting effluent quality parameters and integrating the prediction into WWTP control systems. This integrated approach proves effective in optimizing pollutant regulation and overall system performance. The research provides insights into the practical implementation of ML-based control strategies in wastewater treatment. It offers future scope for exploring advanced ML algorithms and their real-time application in operational WWTPs. This research introduces a novel approach by integrating machine learning with the BSM1 weather dataset and sensor data for feature selection to predict effluent concentrations in a WWTP. Through the comparative analysis with the default proportional-integral (PI) control configuration, the research highlights the importance of integrating machine learning techniques into WWTP control systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
xiaoxiao完成签到,获得积分10
2秒前
典雅易槐发布了新的文献求助10
6秒前
10秒前
99668完成签到,获得积分10
13秒前
14秒前
18秒前
20秒前
nini发布了新的文献求助10
22秒前
小二郎应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
浮浮世世应助科研通管家采纳,获得30
29秒前
浮游应助科研通管家采纳,获得10
29秒前
寒玉完成签到,获得积分10
30秒前
33秒前
35秒前
35秒前
矮小的蜗牛完成签到,获得积分10
38秒前
Zilch发布了新的文献求助10
42秒前
48秒前
50秒前
所所应助一叶舟采纳,获得10
51秒前
迷路冰颜完成签到 ,获得积分10
52秒前
1nooooo完成签到 ,获得积分10
55秒前
58秒前
矮小的蜗牛关注了科研通微信公众号
1分钟前
思源应助runfen采纳,获得10
1分钟前
1分钟前
wynne313完成签到 ,获得积分10
1分钟前
梨凉完成签到,获得积分10
1分钟前
王加冕完成签到 ,获得积分10
1分钟前
shusen完成签到,获得积分10
1分钟前
1分钟前
徐志豪发布了新的文献求助10
1分钟前
泡泡完成签到 ,获得积分10
1分钟前
顺心成仁完成签到 ,获得积分10
1分钟前
1分钟前
fang完成签到,获得积分0
1分钟前
奋斗鸡翅完成签到,获得积分20
1分钟前
选择性哑巴完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493741
求助须知:如何正确求助?哪些是违规求助? 4591745
关于积分的说明 14434583
捐赠科研通 4524146
什么是DOI,文献DOI怎么找? 2478673
邀请新用户注册赠送积分活动 1463681
关于科研通互助平台的介绍 1436464