Optimizing Wastewater Treatment Plant Operational Efficiency Through Integrating Machine Learning Predictive Models and Advanced Control Strategies

模型预测控制 水准点(测量) 污水处理 流出物 预测建模 计算机科学 前馈 工程类 工艺工程 机器学习 人工智能 控制工程 控制(管理) 环境工程 大地测量学 地理
作者
Aparna K.G.,R. Swarnalatha,Murchana Changmai
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:188: 995-1008 被引量:4
标识
DOI:10.1016/j.psep.2024.05.148
摘要

This research optimizes wastewater treatment plant (WWTP) operational performance by integrating advanced control strategies and predictive modeling. Emphasizing the significance of machine learning (ML), feature extraction techniques (filter, wrapper, and embedded methods) were employed to develop robust prediction models. The random forest (RF) model was applied to predict target variables, effluent ammonia, and nitrogen concentrations. Integrating these predictive models into the WWTP's control system is necessary for enhanced efficiency and pollution regulation. Benchmark Simulation Model 1 (BSM1) was used as the WWTP model. The two tested control strategies included a hybrid approach, combining feedforward and feedback control, resulting in an improved effluent quality index (EQI), a marginal increase in aeration energy (AE) and the operational cost index (OCI), and a significant decrease in effluent ammonia concentration. The second strategy utilized self-organizing fuzzy inference system (SOFIS) control, resulting in promising outcomes with improvements in EQI, ammonia, and nitrogen concentrations, with negligible increases in AE and OCI. The findings highlight the pivotal role of predicting effluent quality parameters and integrating the prediction into WWTP control systems. This integrated approach proves effective in optimizing pollutant regulation and overall system performance. The research provides insights into the practical implementation of ML-based control strategies in wastewater treatment. It offers future scope for exploring advanced ML algorithms and their real-time application in operational WWTPs. This research introduces a novel approach by integrating machine learning with the BSM1 weather dataset and sensor data for feature selection to predict effluent concentrations in a WWTP. Through the comparative analysis with the default proportional-integral (PI) control configuration, the research highlights the importance of integrating machine learning techniques into WWTP control systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速友容完成签到 ,获得积分10
刚刚
Asta发布了新的文献求助10
刚刚
刚刚
李琛璐发布了新的文献求助10
1秒前
1秒前
wckow发布了新的文献求助10
1秒前
研友_n0QYAZ完成签到 ,获得积分10
2秒前
cc发布了新的文献求助10
2秒前
ZYQ完成签到,获得积分10
2秒前
heweijiong发布了新的文献求助10
2秒前
Shubin828发布了新的文献求助10
3秒前
3秒前
rigour发布了新的文献求助30
4秒前
4秒前
myy发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
Lucas应助小航爱学习采纳,获得10
6秒前
李健应助平淡的可乐采纳,获得10
8秒前
安屿完成签到,获得积分10
9秒前
Xieyusen发布了新的文献求助10
9秒前
领导范儿应助Young_kristine采纳,获得10
9秒前
风清扬发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
无极微光应助东方元语采纳,获得20
13秒前
xxl完成签到 ,获得积分10
13秒前
14秒前
深情安青应助myy采纳,获得10
14秒前
14秒前
爆米花应助斯文绿凝采纳,获得30
15秒前
所所应助吴未采纳,获得10
17秒前
17秒前
17秒前
heweijiong完成签到,获得积分10
17秒前
开心黄蜂完成签到,获得积分20
18秒前
lzr发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649626
求助须知:如何正确求助?哪些是违规求助? 4778871
关于积分的说明 15049592
捐赠科研通 4808672
什么是DOI,文献DOI怎么找? 2571696
邀请新用户注册赠送积分活动 1528088
关于科研通互助平台的介绍 1486851