Optimizing Wastewater Treatment Plant Operational Efficiency Through Integrating Machine Learning Predictive Models and Advanced Control Strategies

模型预测控制 水准点(测量) 污水处理 流出物 预测建模 计算机科学 前馈 工程类 工艺工程 机器学习 人工智能 控制工程 控制(管理) 环境工程 大地测量学 地理
作者
Aparna K.G.,R. Swarnalatha,Murchana Changmai
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:188: 995-1008 被引量:4
标识
DOI:10.1016/j.psep.2024.05.148
摘要

This research optimizes wastewater treatment plant (WWTP) operational performance by integrating advanced control strategies and predictive modeling. Emphasizing the significance of machine learning (ML), feature extraction techniques (filter, wrapper, and embedded methods) were employed to develop robust prediction models. The random forest (RF) model was applied to predict target variables, effluent ammonia, and nitrogen concentrations. Integrating these predictive models into the WWTP's control system is necessary for enhanced efficiency and pollution regulation. Benchmark Simulation Model 1 (BSM1) was used as the WWTP model. The two tested control strategies included a hybrid approach, combining feedforward and feedback control, resulting in an improved effluent quality index (EQI), a marginal increase in aeration energy (AE) and the operational cost index (OCI), and a significant decrease in effluent ammonia concentration. The second strategy utilized self-organizing fuzzy inference system (SOFIS) control, resulting in promising outcomes with improvements in EQI, ammonia, and nitrogen concentrations, with negligible increases in AE and OCI. The findings highlight the pivotal role of predicting effluent quality parameters and integrating the prediction into WWTP control systems. This integrated approach proves effective in optimizing pollutant regulation and overall system performance. The research provides insights into the practical implementation of ML-based control strategies in wastewater treatment. It offers future scope for exploring advanced ML algorithms and their real-time application in operational WWTPs. This research introduces a novel approach by integrating machine learning with the BSM1 weather dataset and sensor data for feature selection to predict effluent concentrations in a WWTP. Through the comparative analysis with the default proportional-integral (PI) control configuration, the research highlights the importance of integrating machine learning techniques into WWTP control systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助胡楠采纳,获得10
刚刚
客服中心发布了新的文献求助10
刚刚
刚刚
ggboy完成签到 ,获得积分10
刚刚
YYL发布了新的文献求助10
1秒前
1秒前
1秒前
糊涂的友安完成签到 ,获得积分20
1秒前
慕青应助Niamey采纳,获得10
2秒前
爵士好喵发布了新的文献求助10
2秒前
aiyoo发布了新的文献求助10
2秒前
丹菲完成签到,获得积分10
3秒前
tdtk发布了新的文献求助10
4秒前
润润轩轩发布了新的文献求助10
4秒前
葡萄狗发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
zzx222发布了新的文献求助10
5秒前
6秒前
LZZ发布了新的文献求助10
7秒前
津津发布了新的文献求助20
8秒前
8秒前
Mole完成签到,获得积分20
8秒前
小安发布了新的文献求助10
9秒前
海派甜心完成签到,获得积分10
9秒前
9秒前
邱老黑发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
111发布了新的文献求助10
11秒前
11秒前
邵梁健完成签到,获得积分10
12秒前
123完成签到,获得积分10
13秒前
13秒前
诸坤发布了新的文献求助10
13秒前
科研通AI6应助ou采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194196
求助须知:如何正确求助?哪些是违规求助? 4376519
关于积分的说明 13629625
捐赠科研通 4231495
什么是DOI,文献DOI怎么找? 2321049
邀请新用户注册赠送积分活动 1319251
关于科研通互助平台的介绍 1269591