已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimizing Wastewater Treatment Plant Operational Efficiency Through Integrating Machine Learning Predictive Models and Advanced Control Strategies

模型预测控制 水准点(测量) 污水处理 流出物 预测建模 计算机科学 前馈 工程类 工艺工程 机器学习 人工智能 控制工程 控制(管理) 环境工程 大地测量学 地理
作者
Aparna K.G.,R. Swarnalatha,Murchana Changmai
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:188: 995-1008 被引量:4
标识
DOI:10.1016/j.psep.2024.05.148
摘要

This research optimizes wastewater treatment plant (WWTP) operational performance by integrating advanced control strategies and predictive modeling. Emphasizing the significance of machine learning (ML), feature extraction techniques (filter, wrapper, and embedded methods) were employed to develop robust prediction models. The random forest (RF) model was applied to predict target variables, effluent ammonia, and nitrogen concentrations. Integrating these predictive models into the WWTP's control system is necessary for enhanced efficiency and pollution regulation. Benchmark Simulation Model 1 (BSM1) was used as the WWTP model. The two tested control strategies included a hybrid approach, combining feedforward and feedback control, resulting in an improved effluent quality index (EQI), a marginal increase in aeration energy (AE) and the operational cost index (OCI), and a significant decrease in effluent ammonia concentration. The second strategy utilized self-organizing fuzzy inference system (SOFIS) control, resulting in promising outcomes with improvements in EQI, ammonia, and nitrogen concentrations, with negligible increases in AE and OCI. The findings highlight the pivotal role of predicting effluent quality parameters and integrating the prediction into WWTP control systems. This integrated approach proves effective in optimizing pollutant regulation and overall system performance. The research provides insights into the practical implementation of ML-based control strategies in wastewater treatment. It offers future scope for exploring advanced ML algorithms and their real-time application in operational WWTPs. This research introduces a novel approach by integrating machine learning with the BSM1 weather dataset and sensor data for feature selection to predict effluent concentrations in a WWTP. Through the comparative analysis with the default proportional-integral (PI) control configuration, the research highlights the importance of integrating machine learning techniques into WWTP control systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaa发布了新的文献求助10
1秒前
ty完成签到 ,获得积分10
1秒前
平淡冷发布了新的文献求助10
2秒前
3秒前
ding应助挣扎的学渣采纳,获得10
3秒前
传奇3应助ZixuanDeng采纳,获得10
4秒前
5秒前
坚强的初夏完成签到,获得积分10
6秒前
7秒前
7秒前
无花果应助烤冷面采纳,获得10
8秒前
清修发布了新的文献求助10
8秒前
sh131完成签到,获得积分10
10秒前
Lmx发布了新的文献求助10
11秒前
me发布了新的文献求助10
11秒前
yxr发布了新的文献求助20
11秒前
geng完成签到 ,获得积分20
13秒前
15秒前
21秒前
21秒前
Ava应助带大眼珠子了没采纳,获得10
22秒前
22秒前
星辰大海应助Moon采纳,获得10
22秒前
24秒前
feng1235发布了新的文献求助10
25秒前
无私糖豆发布了新的文献求助10
25秒前
CodeCraft应助豆花采纳,获得10
26秒前
chen1314完成签到,获得积分10
28秒前
无聊的夜山完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
29秒前
结实的以莲完成签到,获得积分10
30秒前
30秒前
yyydmhsj完成签到 ,获得积分10
30秒前
31秒前
美满平松完成签到 ,获得积分10
32秒前
jueshadi完成签到 ,获得积分10
32秒前
烤冷面发布了新的文献求助10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763257
求助须知:如何正确求助?哪些是违规求助? 5539799
关于积分的说明 15404550
捐赠科研通 4899105
什么是DOI,文献DOI怎么找? 2635329
邀请新用户注册赠送积分活动 1583419
关于科研通互助平台的介绍 1538503