亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing Wastewater Treatment Plant Operational Efficiency Through Integrating Machine Learning Predictive Models and Advanced Control Strategies

模型预测控制 水准点(测量) 污水处理 流出物 预测建模 计算机科学 前馈 工程类 工艺工程 机器学习 人工智能 控制工程 控制(管理) 环境工程 大地测量学 地理
作者
Aparna K.G.,R. Swarnalatha,Murchana Changmai
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:188: 995-1008 被引量:4
标识
DOI:10.1016/j.psep.2024.05.148
摘要

This research optimizes wastewater treatment plant (WWTP) operational performance by integrating advanced control strategies and predictive modeling. Emphasizing the significance of machine learning (ML), feature extraction techniques (filter, wrapper, and embedded methods) were employed to develop robust prediction models. The random forest (RF) model was applied to predict target variables, effluent ammonia, and nitrogen concentrations. Integrating these predictive models into the WWTP's control system is necessary for enhanced efficiency and pollution regulation. Benchmark Simulation Model 1 (BSM1) was used as the WWTP model. The two tested control strategies included a hybrid approach, combining feedforward and feedback control, resulting in an improved effluent quality index (EQI), a marginal increase in aeration energy (AE) and the operational cost index (OCI), and a significant decrease in effluent ammonia concentration. The second strategy utilized self-organizing fuzzy inference system (SOFIS) control, resulting in promising outcomes with improvements in EQI, ammonia, and nitrogen concentrations, with negligible increases in AE and OCI. The findings highlight the pivotal role of predicting effluent quality parameters and integrating the prediction into WWTP control systems. This integrated approach proves effective in optimizing pollutant regulation and overall system performance. The research provides insights into the practical implementation of ML-based control strategies in wastewater treatment. It offers future scope for exploring advanced ML algorithms and their real-time application in operational WWTPs. This research introduces a novel approach by integrating machine learning with the BSM1 weather dataset and sensor data for feature selection to predict effluent concentrations in a WWTP. Through the comparative analysis with the default proportional-integral (PI) control configuration, the research highlights the importance of integrating machine learning techniques into WWTP control systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zkg发布了新的文献求助10
7秒前
40秒前
江梁发布了新的文献求助10
45秒前
大个应助贝加尔湖畔采纳,获得10
45秒前
53秒前
57秒前
SoreThrow完成签到,获得积分10
1分钟前
霡霂发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
熬夜波比应助科研通管家采纳,获得10
1分钟前
心随以动完成签到 ,获得积分10
1分钟前
1分钟前
修辛完成签到 ,获得积分10
2分钟前
一见喜发布了新的文献求助10
2分钟前
好好好完成签到,获得积分10
2分钟前
2分钟前
Jiangtao完成签到,获得积分10
2分钟前
huyu完成签到 ,获得积分10
2分钟前
3分钟前
SoreThrow发布了新的文献求助10
3分钟前
3分钟前
Leo发布了新的文献求助10
3分钟前
活泼的路人完成签到,获得积分10
3分钟前
3分钟前
Leo完成签到,获得积分10
3分钟前
啊z应助科研通管家采纳,获得10
3分钟前
3分钟前
yhw发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Lu发布了新的文献求助10
4分钟前
JamesPei应助puzhongjiMiQ采纳,获得10
5分钟前
NN应助puzhongjiMiQ采纳,获得10
5分钟前
搜集达人应助puzhongjiMiQ采纳,获得10
5分钟前
ccm应助puzhongjiMiQ采纳,获得10
5分钟前
彭于晏应助puzhongjiMiQ采纳,获得10
5分钟前
完美世界应助puzhongjiMiQ采纳,获得10
5分钟前
pluto应助puzhongjiMiQ采纳,获得10
5分钟前
ccm应助puzhongjiMiQ采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681524
求助须知:如何正确求助?哪些是违规求助? 5009593
关于积分的说明 15175775
捐赠科研通 4841036
什么是DOI,文献DOI怎么找? 2594852
邀请新用户注册赠送积分活动 1547875
关于科研通互助平台的介绍 1505880