Rational design of disulfide bonds to improve the thermostability and γ-cyclodextrin production capacity of γ-cyclodextrin glycosyltransferase

热稳定性 环糊精 化学 二硫键 糖基转移酶 有机化学 生物化学
作者
Ganpeng Hu,JunYan Luo,Tong Bao,Xueqin Hu,Jingwen Yang,Hongbin Zhang
出处
期刊:Process Biochemistry [Elsevier]
卷期号:144: 248-255
标识
DOI:10.1016/j.procbio.2024.06.008
摘要

The ability of γ-cyclodextrin(γ-CD)to form inclusion complexes with various guest compounds, together with its relatively high solubility, gives γ-CD advantages over both α-cyclodextrin(α-CD) and β-cyclodextrin(β-CD). The thermostability of γ-cyclodextrin glycosyltransferases (γ-CGTase) which can produce γ-CD discovered so far is poor, which is one of the problems limiting its industrial application. To enhance the thermostability of γ-CGTase from Bacillus clarkii 7364, potential disulfide bond mutants were predicted by Disulfide by Design. Five pairs of mutants were constructed by analyzing the predicted results. The t1/2 of S172C-R183C was 2.25 h, which was 3.17 times of WT. Molecular dynamics simulations confirmed that the increase of thermostability of S172C-R183C may be due to the formation of disulfide bond, which leads to the increase of structure rigidity of protein. Then the ability of S172C-R183C mutant to produce cyclodextrins(CDs) was tested. Compared with WT, the maximum CD yield, γ-CD yield and γ-CD specificity of S172C-R183C in the non-complexant catalysed reaction were increased by 6.9 %, 8.8 %, and 2.4 % respectively. In the complexant catalyzed reaction, the CDs yield of S172C-R183C increased by 17.0 %, in which the γ-CD yield increased by 21.7 %, and the γ-CD specificity increased by 3.9 %. Molecular docking results showed that S172C-R183C formed more hydrogen bonds with γ-CD, especially Y186, which was the key central site affecting product specificity. This work involving rational protein engineering provided a new method for adjusting γ-CGTase thermostability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助pastor采纳,获得10
刚刚
充电宝应助结实的荷采纳,获得10
刚刚
刚刚
充电宝应助五月采纳,获得10
刚刚
1秒前
黑虎完成签到 ,获得积分10
1秒前
2秒前
2秒前
御风完成签到,获得积分10
2秒前
年轻晓露完成签到,获得积分10
2秒前
李爱国应助ohooo采纳,获得10
3秒前
Amy完成签到,获得积分10
3秒前
3秒前
领导范儿应助小巧的师采纳,获得10
3秒前
3秒前
4秒前
4秒前
研友_VZG7GZ应助ABC采纳,获得10
4秒前
wyfre完成签到,获得积分20
4秒前
5秒前
5秒前
不安青牛应助小林神采纳,获得10
6秒前
CipherSage应助浮华逝采纳,获得10
6秒前
6秒前
Orange应助媛媛采纳,获得10
6秒前
科目三应助kxy采纳,获得10
6秒前
8秒前
zsy发布了新的文献求助10
8秒前
8秒前
8秒前
饼干完成签到,获得积分10
9秒前
小羊的yang是阳完成签到 ,获得积分10
9秒前
nice完成签到,获得积分10
10秒前
10秒前
10秒前
guanguan发布了新的文献求助10
11秒前
波风水门pxf完成签到,获得积分10
11秒前
木子完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469183
求助须知:如何正确求助?哪些是违规求助? 3062194
关于积分的说明 9078285
捐赠科研通 2752576
什么是DOI,文献DOI怎么找? 1510487
科研通“疑难数据库(出版商)”最低求助积分说明 697899
邀请新用户注册赠送积分活动 697783