电离层
中纬度
地球物理学
大气科学
F区域
热层
地磁风暴
物理
等离子体
太阳风
量子力学
作者
Xiaochuan Wang,Jiuhou Lei,Shun‐Rong Zhang,Zezhong Li,Tong Dang,Xiaoli Luan,Xiankang Dou
摘要
Abstract The generation of medium‐scale traveling ionospheric disturbances (MSTIDs) in the mid‐latitude F region ionosphere, particularly in the presence of sporadic E (Es) layers or geomagnetically conjugate features, has been the focus of extensive investigation using both observational and numerical modeling approaches. Recent observations have revealed the occurrence of nighttime MSTIDs over the continental US during storm conditions even without invoking the Es instability. While this phenomenon is considered to be electrified and likely associated with the Perkins instability, the influences of storm‐enhanced density (SED), electric fields, and winds on the excitation of nighttime MSTIDs remain a complicated issue and require further quantitative analysis. In this study, we develop a two‐dimensional numerical model of the nighttime ionospheric electrodynamics at midlatitudes using the ionospheric ion continuity equation and the electric field Poisson equation to investigate the characteristics of MSTIDs in the SED base region during storm conditions. We demonstrate that the magnetic inclination effect can explain the lower latitude preference of the MSTIDs during magnetic storms, while the development of MSTIDs is primarily influenced by intense storm electric fields under the background ionospheric condition of large density gradients associated with SED. However, the impact of neutral winds on the MSTIDs growth varies, depending on their specific direction determined by the strongly dynamic spatiotemporal variation of the thermosphere and ionosphere during storms. Therefore, the MSTIDs stormtime scenario results from a combination of multiple important factors.
科研通智能强力驱动
Strongly Powered by AbleSci AI