A Sentimental Prompt Framework with Visual Text Encoder for Multimodal Sentiment Analysis

计算机科学 情绪分析 编码器 代表(政治) 社会化媒体 图像(数学) 人工智能 自然语言处理 源代码 可视化 模态(人机交互) 编码(集合论) 自编码 深度学习 情报检索 万维网 操作系统 集合(抽象数据类型) 政治 政治学 法学 程序设计语言
作者
Shizhou Huang,Bo Xu,Changqun Li,Jiabo Ye,Xin Lin
标识
DOI:10.1145/3652583.3658115
摘要

Recently, multimodal sentiment analysis from social media posts has received increasing attention, as it can effectively improve single-modality-based sentiment analysis by leveraging the complementary information between text and images. Despite their success, current methods still suffer from two weaknesses: (1) the current methods for obtaining image representations do not obtain sentiment information, which leads to a significant gap between image representations and results; (2) the current methods ignore the sentiments expressed by the symbols (emoticons, emojis) in the text, but these symbols can effectively reflect the user's sentiments. To address these issues, we propose a sentimental prompt framework with visual text encoder (SPFVTE). Specifically, for the first problem, instead of using the image representation directly, we project the image representation as a prompt and utilize the prompt learning to capture sentimental information in images by learning a sentiment-specific prompt. For the second problem, considering that people get the meanings of emojis and emoticons from their graphics, we propose to render the text as an image and use a visual text encoder to capture the sentiments contained in emojis and emoticons. We have conducted experiments on three public multimodal sentiment datasets, and the experimental results show that our method can significantly and consistently outperform the state-of-the-art methods. The datasets and source code can be found at https://github.com/JinFish/SPFVTE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
SciGPT应助神勇的夜山采纳,获得10
1秒前
美满向薇发布了新的文献求助10
2秒前
天才小能喵完成签到 ,获得积分0
4秒前
搞笑羽球人完成签到,获得积分10
4秒前
酷波er应助忱麓裔采纳,获得10
6秒前
蓝天应助晴朗的蓝采纳,获得10
6秒前
6秒前
大模型应助王明磊采纳,获得10
6秒前
9秒前
dw完成签到,获得积分10
9秒前
VV完成签到,获得积分10
10秒前
乐乐完成签到,获得积分10
11秒前
Azizbek发布了新的文献求助10
11秒前
11秒前
wanci应助Sophia采纳,获得10
12秒前
今后应助ziying126采纳,获得10
12秒前
111完成签到,获得积分10
12秒前
14秒前
16秒前
16秒前
LaTeXer应助Joye采纳,获得50
17秒前
婷婷子发布了新的文献求助10
18秒前
embalmjoy完成签到,获得积分10
18秒前
忱麓裔发布了新的文献求助10
19秒前
畅快之柔发布了新的文献求助10
19秒前
啦啦啦发布了新的文献求助10
19秒前
20秒前
20秒前
傲娇黄豆完成签到,获得积分10
20秒前
22秒前
22秒前
22秒前
阿龙啊完成签到 ,获得积分10
22秒前
压痕发布了新的文献求助10
23秒前
23秒前
懵懂的莛完成签到,获得积分10
24秒前
弎夜完成签到,获得积分10
25秒前
cancan完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546674
求助须知:如何正确求助?哪些是违规求助? 3977829
关于积分的说明 12317357
捐赠科研通 3646236
什么是DOI,文献DOI怎么找? 2008079
邀请新用户注册赠送积分活动 1043641
科研通“疑难数据库(出版商)”最低求助积分说明 932363