Misclassification in Weakly Supervised Object Detection

人工智能 目标检测 模式识别(心理学) 计算机科学 计算机视觉 对象(语法) 图像处理 图像(数学)
作者
Zhihao Wu,Yong Xu,Jian Yang,Xuelong Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3413-3427 被引量:3
标识
DOI:10.1109/tip.2024.3402981
摘要

Weakly supervised object detection (WSOD) aims to train detectors using only image-category labels. Current methods typically first generate dense class-agnostic proposals and then select objects based on the classification scores of these proposals. These methods mainly focus on selecting the proposal having high Intersection-over-Union with the true object location, while ignoring the problem of misclassification, which occurs when some proposals exhibit semantic similarities with objects from other categories due to viewing perspective and background interference. We observe that the positive class that is misclassified typically has the following two characteristics: (1) It is usually misclassified as one or a few specific negative classes, and the scores of these negative classes are high; (2) Compared to other negative classes, the score of the positive class is relatively high. Based on these two characteristics, we propose misclassification correction (MCC) and misclassification tolerance (MCT) respectively. In MCC, we establish a misclassification memory bank to record and summarize the class-pairs with high frequencies of potential misclassifications in the early stage of training, that is, cases where the score of a negative class is significantly higher than that of the positive class. In the later stage of training, when such cases occur and correspond to the summarized class-pairs, we select the top-scoring negative class proposal as the positive training example. In MCT, we decrease the loss weights of misclassified classes in the later stage of training to avoid them dominating training and causing misclassification of objects from other classes that are semantically similar to them during inference. Extensive experiments on the PASCAL VOC and MS COCO demonstrate our method can alleviate the problem of misclassification and achieve the state-of-the-art results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
涟漪完成签到,获得积分10
1秒前
LL发布了新的文献求助10
2秒前
CodeCraft应助liaoxl采纳,获得10
3秒前
4秒前
乐乐应助echoxq采纳,获得10
4秒前
哆哆发布了新的文献求助10
5秒前
6秒前
袁东发布了新的文献求助20
6秒前
8秒前
8秒前
科研靓仔发布了新的文献求助10
9秒前
9秒前
123456发布了新的文献求助10
11秒前
13秒前
张贵虎发布了新的文献求助10
13秒前
Karry完成签到 ,获得积分10
14秒前
echoxq完成签到,获得积分10
15秒前
16秒前
沐颜完成签到 ,获得积分10
17秒前
echoxq发布了新的文献求助10
19秒前
坦率的慕晴完成签到,获得积分10
19秒前
Heidouyan完成签到,获得积分10
19秒前
科研靓仔发布了新的文献求助10
20秒前
20秒前
22秒前
huang完成签到 ,获得积分10
22秒前
广东完成签到 ,获得积分10
22秒前
脑洞疼应助hgzz采纳,获得10
23秒前
24秒前
打打应助斯文墨镜采纳,获得10
25秒前
re发布了新的文献求助10
26秒前
27秒前
cyj发布了新的文献求助10
28秒前
29秒前
29秒前
深情曼冬发布了新的文献求助10
29秒前
32秒前
科研靓仔发布了新的文献求助10
32秒前
ZQJ发布了新的文献求助10
33秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412622
求助须知:如何正确求助?哪些是违规求助? 3015253
关于积分的说明 8869486
捐赠科研通 2703007
什么是DOI,文献DOI怎么找? 1481978
科研通“疑难数据库(出版商)”最低求助积分说明 685102
邀请新用户注册赠送积分活动 679761