Swin-CFNet: An Attempt at Fine-Grained Urban Green Space Classification Using Swin Transformer and Convolutional Neural Network

卷积神经网络 计算机科学 变压器 人工智能 模式识别(心理学) 工程类 电压 电气工程
作者
Yehong Wu,Meng Zhang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:1
标识
DOI:10.1109/lgrs.2024.3404393
摘要

Urban green space plays a critical role in contemporary urban planning and ecology as they provide recreational space for residents, promote ecological balance, and enhance the quality of the urban environment. However, the rapid development of urbanization poses increasingly complex challenges to the monitoring and management of these spaces. Previous studies have illustrated that semantic segmentation models based on convolutional neural network (CNN) perform well in classifying urban green space using high-resolution remote sensing images. However, there are still some deficiencies in CNNs model in capturing global information of green space and dealing with complex spatial relationships due to the special nature of urban environments, such as fragmentation of green space. Hence, swin transformer-CNN-fusion-network(Swin-CFNet) was proposed for urban green space classification, which overcomes the limitations of traditional methods in dealing with global green space information and complex spatial relationships by constructing a residual-swin-fusion (RSF) module for fusion of multi-source features. Experimental results demonstrated that the Swin-CFNet outperformed the UNet in urban green space classification, achieving an overall accuracy (OA) of 98.3% and improving the mean intersection over union (mIoU) compared to UNet and SwinUnet by 3.7% and 1%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助zzx采纳,获得20
刚刚
1秒前
1秒前
潇洒紫真完成签到,获得积分10
1秒前
典雅碧空发布了新的文献求助10
1秒前
3秒前
小二郎应助521采纳,获得10
4秒前
Yu完成签到,获得积分10
4秒前
www完成签到 ,获得积分20
5秒前
6秒前
冷酷芷雪发布了新的文献求助10
6秒前
7秒前
完美世界应助Yu采纳,获得10
7秒前
7秒前
万能图书馆应助安安采纳,获得10
7秒前
8秒前
9秒前
9秒前
星辰大海应助hou采纳,获得10
9秒前
星辰大海应助Yuejun采纳,获得10
9秒前
Ashley完成签到,获得积分10
10秒前
BaekHyun完成签到 ,获得积分10
11秒前
勇敢牛牛发布了新的文献求助10
11秒前
11秒前
隐形曼青应助twotwomi采纳,获得10
12秒前
zxy完成签到,获得积分10
12秒前
yi111发布了新的文献求助20
13秒前
srq发布了新的文献求助10
14秒前
15秒前
zzx发布了新的文献求助20
15秒前
美好的酸奶完成签到,获得积分20
15秒前
zxy发布了新的文献求助10
16秒前
独特的秋应助Henry采纳,获得50
17秒前
斯文败类应助srq采纳,获得10
19秒前
Lucas应助Nelson_Foo采纳,获得10
19秒前
CipherSage应助even采纳,获得10
20秒前
勇敢牛牛完成签到,获得积分10
20秒前
20秒前
清秀冰珍完成签到,获得积分10
21秒前
JJ完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954525
求助须知:如何正确求助?哪些是违规求助? 3500615
关于积分的说明 11100212
捐赠科研通 3231137
什么是DOI,文献DOI怎么找? 1786269
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719