Boundary-Aware Gradient Operator Network for Medical Image Segmentation

计算机科学 卷积(计算机科学) 人工智能 卷积神经网络 边界(拓扑) 特征(语言学) 图像分割 分割 模式识别(心理学) 初始化 图像渐变 计算机视觉 人工神经网络 图像纹理 数学 数学分析 哲学 语言学 程序设计语言
作者
Li Yu,Wenwen Min,Shunfang Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4711-4723 被引量:5
标识
DOI:10.1109/jbhi.2024.3404273
摘要

Medical image segmentation is a crucial task in computer-aided diagnosis. Although convolutional neural networks (CNNs) have made significant progress in the field of medical image segmentation, the convolution kernels of CNNs are optimized from random initialization without explicitly encoding gradient information, leading to a lack of specificity for certain features, such as blurred boundary features. Furthermore, the frequently applied down-sampling operation also loses the fine structural features in shallow layers. Therefore, we propose a boundary-aware gradient operator network (BG-Net) for medical image segmentation, in which the gradient convolution (GConv) and the boundary-aware mechanism (BAM) modules are developed to simulate image boundary features and the remote dependencies between channels. The GConv module transforms the gradient operator into a convolutional operation that can extract gradient features; it attempts to extract more features such as images boundaries and textures, thereby fully utilizing limited input to capture more features representing boundaries. In addition, the BAM can increase the amount of global contextual information while suppressing invalid information by focusing on feature dependencies and the weight ratios between channels. Thus, the boundary perception ability of BG-Net is improved. Finally, we use a multi-modal fusion mechanism to effectively fuse lightweight gradient convolution and U-shaped branch features into a multilevel feature, enabling global dependencies and low-level spatial details to be effectively captured in a shallower manner. We conduct extensive experiments on eight datasets that broadly cover medical images to evaluate the effectiveness of the proposed BG-Net. The experimental results demonstrate that BG-Net outperforms the state-of-the-art methods, particularly those focused on boundary segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助行歌采纳,获得10
1秒前
1秒前
Conccuc发布了新的文献求助10
1秒前
典雅的觅儿完成签到,获得积分10
1秒前
2秒前
科研通AI2S应助梓歆采纳,获得10
3秒前
Ni完成签到,获得积分20
3秒前
3秒前
为学日益发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
杨小绿zbsl发布了新的文献求助10
5秒前
研友_ng9v28完成签到,获得积分10
5秒前
坦率芝麻完成签到,获得积分10
5秒前
爆米花应助正直的hh采纳,获得10
5秒前
科研小白发布了新的文献求助10
6秒前
sldl完成签到,获得积分10
6秒前
猪猪hero发布了新的文献求助10
6秒前
Ray羽曦~发布了新的文献求助10
7秒前
Akim应助可靠的0采纳,获得10
7秒前
7秒前
7秒前
7秒前
赘婿应助rose采纳,获得10
7秒前
认真雅阳完成签到,获得积分10
8秒前
李故完成签到,获得积分10
8秒前
yxy发布了新的文献求助30
8秒前
8秒前
大方平蓝完成签到,获得积分10
8秒前
mmagg发布了新的文献求助10
8秒前
8秒前
淳于文昊完成签到,获得积分20
8秒前
汤飞柏发布了新的文献求助10
9秒前
爆米花应助nietao采纳,获得10
9秒前
温暖琦发布了新的文献求助10
9秒前
饼饼完成签到,获得积分10
9秒前
10秒前
orixero应助细心的恋风采纳,获得10
10秒前
birdy发布了新的文献求助10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974602
求助须知:如何正确求助?哪些是违规求助? 3519026
关于积分的说明 11196787
捐赠科研通 3255127
什么是DOI,文献DOI怎么找? 1797693
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130