Boundary-Aware Gradient Operator Network for Medical Image Segmentation

计算机科学 卷积(计算机科学) 人工智能 卷积神经网络 边界(拓扑) 特征(语言学) 图像分割 分割 模式识别(心理学) 初始化 图像渐变 计算机视觉 人工神经网络 图像纹理 数学 数学分析 哲学 语言学 程序设计语言
作者
Li Yu,Wenwen Min,Shunfang Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4711-4723 被引量:5
标识
DOI:10.1109/jbhi.2024.3404273
摘要

Medical image segmentation is a crucial task in computer-aided diagnosis. Although convolutional neural networks (CNNs) have made significant progress in the field of medical image segmentation, the convolution kernels of CNNs are optimized from random initialization without explicitly encoding gradient information, leading to a lack of specificity for certain features, such as blurred boundary features. Furthermore, the frequently applied down-sampling operation also loses the fine structural features in shallow layers. Therefore, we propose a boundary-aware gradient operator network (BG-Net) for medical image segmentation, in which the gradient convolution (GConv) and the boundary-aware mechanism (BAM) modules are developed to simulate image boundary features and the remote dependencies between channels. The GConv module transforms the gradient operator into a convolutional operation that can extract gradient features; it attempts to extract more features such as images boundaries and textures, thereby fully utilizing limited input to capture more features representing boundaries. In addition, the BAM can increase the amount of global contextual information while suppressing invalid information by focusing on feature dependencies and the weight ratios between channels. Thus, the boundary perception ability of BG-Net is improved. Finally, we use a multi-modal fusion mechanism to effectively fuse lightweight gradient convolution and U-shaped branch features into a multilevel feature, enabling global dependencies and low-level spatial details to be effectively captured in a shallower manner. We conduct extensive experiments on eight datasets that broadly cover medical images to evaluate the effectiveness of the proposed BG-Net. The experimental results demonstrate that BG-Net outperforms the state-of-the-art methods, particularly those focused on boundary segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阳光冰颜完成签到,获得积分10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
star应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
4秒前
BareBear应助科研通管家采纳,获得10
4秒前
欣慰煎蛋应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
执着怜珊完成签到 ,获得积分10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
BareBear应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
star应助科研通管家采纳,获得10
4秒前
langzhiquan应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
Smar_zcl应助科研通管家采纳,获得20
5秒前
5秒前
star应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
13841881385完成签到,获得积分10
6秒前
ly完成签到,获得积分10
7秒前
7秒前
8秒前
EDTA完成签到,获得积分10
8秒前
xdc完成签到,获得积分20
9秒前
10秒前
老程完成签到,获得积分10
10秒前
自由依秋发布了新的文献求助20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304495
求助须知:如何正确求助?哪些是违规求助? 4450995
关于积分的说明 13850260
捐赠科研通 4338051
什么是DOI,文献DOI怎么找? 2381778
邀请新用户注册赠送积分活动 1376865
关于科研通互助平台的介绍 1344153