清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Boundary-Aware Gradient Operator Network for Medical Image Segmentation

计算机科学 卷积(计算机科学) 人工智能 卷积神经网络 边界(拓扑) 特征(语言学) 图像分割 分割 模式识别(心理学) 初始化 图像渐变 计算机视觉 人工神经网络 图像纹理 数学 数学分析 哲学 语言学 程序设计语言
作者
Li Yu,Wenwen Min,Shunfang Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4711-4723 被引量:5
标识
DOI:10.1109/jbhi.2024.3404273
摘要

Medical image segmentation is a crucial task in computer-aided diagnosis. Although convolutional neural networks (CNNs) have made significant progress in the field of medical image segmentation, the convolution kernels of CNNs are optimized from random initialization without explicitly encoding gradient information, leading to a lack of specificity for certain features, such as blurred boundary features. Furthermore, the frequently applied down-sampling operation also loses the fine structural features in shallow layers. Therefore, we propose a boundary-aware gradient operator network (BG-Net) for medical image segmentation, in which the gradient convolution (GConv) and the boundary-aware mechanism (BAM) modules are developed to simulate image boundary features and the remote dependencies between channels. The GConv module transforms the gradient operator into a convolutional operation that can extract gradient features; it attempts to extract more features such as images boundaries and textures, thereby fully utilizing limited input to capture more features representing boundaries. In addition, the BAM can increase the amount of global contextual information while suppressing invalid information by focusing on feature dependencies and the weight ratios between channels. Thus, the boundary perception ability of BG-Net is improved. Finally, we use a multi-modal fusion mechanism to effectively fuse lightweight gradient convolution and U-shaped branch features into a multilevel feature, enabling global dependencies and low-level spatial details to be effectively captured in a shallower manner. We conduct extensive experiments on eight datasets that broadly cover medical images to evaluate the effectiveness of the proposed BG-Net. The experimental results demonstrate that BG-Net outperforms the state-of-the-art methods, particularly those focused on boundary segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
50秒前
卡卡罗特先森完成签到 ,获得积分10
1分钟前
波西米亚完成签到,获得积分10
1分钟前
wuhu完成签到 ,获得积分10
1分钟前
迅速的幻雪完成签到 ,获得积分10
1分钟前
huanghe完成签到,获得积分10
2分钟前
香蕉觅云应助百里幻竹采纳,获得10
3分钟前
勤劳的颤完成签到 ,获得积分10
3分钟前
3分钟前
百里幻竹发布了新的文献求助10
3分钟前
coolplex完成签到 ,获得积分10
3分钟前
薛家泰完成签到 ,获得积分10
4分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
4分钟前
123321完成签到 ,获得积分10
5分钟前
迷茫的一代完成签到,获得积分10
5分钟前
beihaik完成签到 ,获得积分10
6分钟前
科研通AI6应助快乐陶采纳,获得10
6分钟前
小马甲应助科研通管家采纳,获得10
6分钟前
龙猫爱看书完成签到,获得积分10
7分钟前
7分钟前
Benhnhk21完成签到,获得积分10
7分钟前
7分钟前
快乐陶发布了新的文献求助10
7分钟前
8分钟前
面汤完成签到 ,获得积分10
8分钟前
Unlisted发布了新的文献求助30
8分钟前
9分钟前
西山菩提完成签到,获得积分10
9分钟前
快乐陶完成签到,获得积分10
9分钟前
9分钟前
10分钟前
Dreamhappy完成签到,获得积分10
10分钟前
mzhang2完成签到 ,获得积分10
10分钟前
缥缈的背包完成签到 ,获得积分10
10分钟前
披着羊皮的狼完成签到 ,获得积分10
10分钟前
默存完成签到,获得积分10
11分钟前
11分钟前
郑琦敏钰完成签到 ,获得积分10
11分钟前
zpl完成签到 ,获得积分10
12分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582666
求助须知:如何正确求助?哪些是违规求助? 4000312
关于积分的说明 12382338
捐赠科研通 3675384
什么是DOI,文献DOI怎么找? 2025814
邀请新用户注册赠送积分活动 1059475
科研通“疑难数据库(出版商)”最低求助积分说明 946145