亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Boundary-Aware Gradient Operator Network for Medical Image Segmentation

计算机科学 卷积(计算机科学) 人工智能 卷积神经网络 边界(拓扑) 特征(语言学) 图像分割 分割 模式识别(心理学) 初始化 图像渐变 计算机视觉 人工神经网络 图像纹理 数学 数学分析 语言学 哲学 程序设计语言
作者
Li Yu,Wenwen Min,Shunfang Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4711-4723 被引量:5
标识
DOI:10.1109/jbhi.2024.3404273
摘要

Medical image segmentation is a crucial task in computer-aided diagnosis. Although convolutional neural networks (CNNs) have made significant progress in the field of medical image segmentation, the convolution kernels of CNNs are optimized from random initialization without explicitly encoding gradient information, leading to a lack of specificity for certain features, such as blurred boundary features. Furthermore, the frequently applied down-sampling operation also loses the fine structural features in shallow layers. Therefore, we propose a boundary-aware gradient operator network (BG-Net) for medical image segmentation, in which the gradient convolution (GConv) and the boundary-aware mechanism (BAM) modules are developed to simulate image boundary features and the remote dependencies between channels. The GConv module transforms the gradient operator into a convolutional operation that can extract gradient features; it attempts to extract more features such as images boundaries and textures, thereby fully utilizing limited input to capture more features representing boundaries. In addition, the BAM can increase the amount of global contextual information while suppressing invalid information by focusing on feature dependencies and the weight ratios between channels. Thus, the boundary perception ability of BG-Net is improved. Finally, we use a multi-modal fusion mechanism to effectively fuse lightweight gradient convolution and U-shaped branch features into a multilevel feature, enabling global dependencies and low-level spatial details to be effectively captured in a shallower manner. We conduct extensive experiments on eight datasets that broadly cover medical images to evaluate the effectiveness of the proposed BG-Net. The experimental results demonstrate that BG-Net outperforms the state-of-the-art methods, particularly those focused on boundary segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助陈大仙采纳,获得10
7秒前
科研通AI2S应助Nightfall采纳,获得10
9秒前
George发布了新的文献求助10
10秒前
爆米花应助无奈的靖仇采纳,获得10
15秒前
17秒前
20秒前
LALA发布了新的文献求助10
23秒前
夜安发布了新的文献求助10
23秒前
陈大仙发布了新的文献求助10
24秒前
乐乐应助LALA采纳,获得10
32秒前
36秒前
zhdhh发布了新的文献求助10
38秒前
xun完成签到,获得积分20
48秒前
50秒前
毛豆爸爸应助xun采纳,获得20
53秒前
逆天大脚发布了新的文献求助10
54秒前
陈大仙完成签到,获得积分10
58秒前
G1997完成签到 ,获得积分10
58秒前
1分钟前
ranj完成签到,获得积分10
1分钟前
1分钟前
Blitz完成签到,获得积分10
1分钟前
安详的从筠完成签到,获得积分10
1分钟前
上官若男应助夜安采纳,获得10
1分钟前
科研通AI6应助Pipi采纳,获得10
1分钟前
科研通AI6应助Pipi采纳,获得10
1分钟前
2分钟前
2分钟前
夜安完成签到 ,获得积分10
2分钟前
可爱的函函应助Pipi采纳,获得10
2分钟前
传奇3应助陈文学采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
怡然自中完成签到 ,获得积分10
2分钟前
上官若男应助coollz采纳,获得10
2分钟前
桐桐应助科研通管家采纳,获得10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
乐乐应助科研通管家采纳,获得10
2分钟前
维奈克拉应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639537
求助须知:如何正确求助?哪些是违规求助? 4748939
关于积分的说明 15006656
捐赠科研通 4797713
什么是DOI,文献DOI怎么找? 2563741
邀请新用户注册赠送积分活动 1522710
关于科研通互助平台的介绍 1482425