Mining Multimorbidity Trajectories and Co-Medication Effects from Patient Data to Predict Post–Hip Fracture Outcomes

髋部骨折 医学 召回 水准点(测量) 内科学 骨质疏松症 大地测量学 语言学 哲学 地理
作者
Jessica Qiuhua Sheng,Da Xu,Paul Jen‐Hwa Hu,Liang Li,Ting Huang
出处
期刊:ACM transactions on management information systems [Association for Computing Machinery]
卷期号:15 (2): 1-24
标识
DOI:10.1145/3665250
摘要

Hip fractures have profound impacts on patients’ conditions and quality of life, even when they receive therapeutic treatments. Many patients face the risk of poor prognosis, physical impairment, and even mortality, especially older patients. Accurate patient outcome estimates after an initial fracture are critical to physicians’ decision-making and patient management. Effective predictions might benefit from analyses of patients’ multimorbidity trajectories and medication usages. If adequately modeled and analyzed, then they could help identify patients at higher risk of recurrent fractures or mortality. Most analytics methods overlook the onset, co-occurrence, and temporal sequence of distinct chronic diseases in the trajectory, and they also seldom consider the combined effects of different medications. To support effective predictions, we develop a novel deep learning–based method that uses a cross-attention mechanism to model patient progression by obtaining “contextual information” from multimorbidity trajectories. This method also incorporates a nested self-attention network that captures the combined effects of distinct medications by learning the interactions among medications and how dosages might influence post-fracture outcomes. A real-world patient dataset is used to evaluate the proposed method, relative to six benchmark methods. The comparative results indicate that our method consistently outperforms all the benchmarks in precision, recall, F-measures, and area under the curve. The proposed method is generalizable and can be implemented as a decision support system to identify patients at greater risk of recurrent hip fractures or mortality, which should help clinical decision-making and patient management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助hsy采纳,获得10
刚刚
小蘑菇应助hh采纳,获得10
3秒前
李爱国应助小熊采纳,获得10
3秒前
3秒前
忧伤的天真完成签到,获得积分10
3秒前
guard发布了新的文献求助10
5秒前
宁碧菡完成签到,获得积分10
9秒前
科研通AI2S应助better采纳,获得10
10秒前
cdercder应助流星砸地鼠采纳,获得30
10秒前
a烂完成签到,获得积分10
11秒前
11秒前
充电宝应助殷勤的斓采纳,获得10
12秒前
差不多小姐完成签到,获得积分10
13秒前
dumo完成签到,获得积分10
13秒前
科研通AI2S应助全鑫采纳,获得10
14秒前
Romitavia完成签到,获得积分10
14秒前
小二郎应助luce采纳,获得10
14秒前
cwb发布了新的文献求助10
14秒前
CodeCraft应助书羽采纳,获得10
16秒前
16秒前
weirdo完成签到,获得积分10
17秒前
CodeCraft应助风中的夕阳采纳,获得10
18秒前
18秒前
18秒前
18秒前
19秒前
20秒前
swing发布了新的文献求助10
22秒前
22秒前
可爱的函函应助TK采纳,获得10
23秒前
脑洞疼应助PAPA采纳,获得10
23秒前
23秒前
23秒前
南宫萍完成签到,获得积分10
23秒前
stars发布了新的文献求助10
24秒前
科研土人发布了新的文献求助10
24秒前
24秒前
24秒前
万能图书馆应助4y采纳,获得10
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555076
求助须知:如何正确求助?哪些是违规求助? 3130818
关于积分的说明 9388790
捐赠科研通 2830291
什么是DOI,文献DOI怎么找? 1555914
邀请新用户注册赠送积分活动 726331
科研通“疑难数据库(出版商)”最低求助积分说明 715716