亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi-supervised process monitoring based on self-training PCA model

过程(计算) 培训(气象学) 计算机科学 人工智能 地理 气象学 操作系统
作者
Junhua Zheng,Lingjian Ye,Zhiqiang Ge
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:187: 1311-1321 被引量:2
标识
DOI:10.1016/j.psep.2024.05.065
摘要

Data-centric engineering has recently become as a hot spot in both areas of artificial intelligence and data science, which shifts the focus of engineering application from model to data itself. The model for data-driven process monitoring is usually developed upon a large number of normal data samples, which have been assumed to be well evaluated in advance. However, the actual quality of those training data samples has a great impact to the monitoring performance. If those samples with low quality are included for modeling, the monitoring performance could be severely deteriorated. In practice, due to expensive and time-consuming data quality evaluation procedures, we may only have a quite limited number of evaluated data samples, and hold a large number of unevaluated data samples. This paper aims to develop a semi-supervised monitoring model, which can simultaneously incorporate the evaluated dataset and the original unevaluated dataset. As a result, the new semi-supervised monitoring scheme can save a lot of human efforts, and could be particularly useful in those processes which can only provide a small portion of evaluated data samples in time. The feasibility and efficiency of the new proposed monitoring scheme are examined through case studies of a numerical example and the TE benchmark process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
吃的饭广泛完成签到 ,获得积分10
36秒前
38秒前
大雁完成签到 ,获得积分10
39秒前
优秀的流沙举报千宝求助涉嫌违规
43秒前
111111111发布了新的文献求助10
48秒前
49秒前
54秒前
1分钟前
1分钟前
xiaozhao123发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
evil发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
美好颜发布了新的文献求助10
3分钟前
GingerF应助十二倍根号二采纳,获得50
4分钟前
美好颜完成签到,获得积分10
4分钟前
GingerF完成签到,获得积分0
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
kw98完成签到 ,获得积分10
5分钟前
田様应助SW采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
SW发布了新的文献求助10
5分钟前
nav完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111256
捐赠科研通 3234136
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264