Semi-supervised process monitoring based on self-training PCA model

过程(计算) 培训(气象学) 计算机科学 人工智能 地理 气象学 操作系统
作者
Junhua Zheng,Lingjian Ye,Zhiqiang Ge
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:187: 1311-1321 被引量:2
标识
DOI:10.1016/j.psep.2024.05.065
摘要

Data-centric engineering has recently become as a hot spot in both areas of artificial intelligence and data science, which shifts the focus of engineering application from model to data itself. The model for data-driven process monitoring is usually developed upon a large number of normal data samples, which have been assumed to be well evaluated in advance. However, the actual quality of those training data samples has a great impact to the monitoring performance. If those samples with low quality are included for modeling, the monitoring performance could be severely deteriorated. In practice, due to expensive and time-consuming data quality evaluation procedures, we may only have a quite limited number of evaluated data samples, and hold a large number of unevaluated data samples. This paper aims to develop a semi-supervised monitoring model, which can simultaneously incorporate the evaluated dataset and the original unevaluated dataset. As a result, the new semi-supervised monitoring scheme can save a lot of human efforts, and could be particularly useful in those processes which can only provide a small portion of evaluated data samples in time. The feasibility and efficiency of the new proposed monitoring scheme are examined through case studies of a numerical example and the TE benchmark process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jay完成签到,获得积分10
1秒前
剧院的饭桶完成签到,获得积分10
1秒前
Qiuyajing完成签到,获得积分10
1秒前
犹豫的小懒猪完成签到,获得积分10
2秒前
不安毛豆应助LEE采纳,获得10
2秒前
养条狗吧完成签到,获得积分10
2秒前
英姑应助子宁采纳,获得10
4秒前
CC发布了新的文献求助10
4秒前
4秒前
jin_strive完成签到,获得积分10
4秒前
平淡尔琴完成签到,获得积分10
4秒前
5秒前
lemon完成签到,获得积分10
5秒前
6秒前
爱听歌的大地完成签到 ,获得积分10
6秒前
zhengke924完成签到,获得积分10
6秒前
6秒前
ssss完成签到,获得积分10
6秒前
阔达的海完成签到,获得积分10
6秒前
小笼包完成签到,获得积分10
7秒前
7秒前
8秒前
科研通AI2S应助科研顺风采纳,获得10
8秒前
8秒前
coolru完成签到,获得积分10
9秒前
阿巴阿巴阿巴完成签到,获得积分10
9秒前
135完成签到,获得积分10
9秒前
FL发布了新的文献求助10
10秒前
李博士完成签到,获得积分10
11秒前
忐忑的邑发布了新的文献求助10
11秒前
11秒前
gxh00完成签到,获得积分10
11秒前
薇薇发布了新的文献求助10
12秒前
echo完成签到 ,获得积分10
12秒前
13秒前
小白想抱大佬腿完成签到,获得积分10
13秒前
在水一方应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
yufanhui应助科研通管家采纳,获得10
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257286
求助须知:如何正确求助?哪些是违规求助? 2899187
关于积分的说明 8304261
捐赠科研通 2568471
什么是DOI,文献DOI怎么找? 1395131
科研通“疑难数据库(出版商)”最低求助积分说明 652952
邀请新用户注册赠送积分活动 630691