Semi-supervised process monitoring based on self-training PCA model

过程(计算) 培训(气象学) 计算机科学 人工智能 地理 气象学 操作系统
作者
Junhua Zheng,Lingjian Ye,Zhiqiang Ge
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:187: 1311-1321 被引量:2
标识
DOI:10.1016/j.psep.2024.05.065
摘要

Data-centric engineering has recently become as a hot spot in both areas of artificial intelligence and data science, which shifts the focus of engineering application from model to data itself. The model for data-driven process monitoring is usually developed upon a large number of normal data samples, which have been assumed to be well evaluated in advance. However, the actual quality of those training data samples has a great impact to the monitoring performance. If those samples with low quality are included for modeling, the monitoring performance could be severely deteriorated. In practice, due to expensive and time-consuming data quality evaluation procedures, we may only have a quite limited number of evaluated data samples, and hold a large number of unevaluated data samples. This paper aims to develop a semi-supervised monitoring model, which can simultaneously incorporate the evaluated dataset and the original unevaluated dataset. As a result, the new semi-supervised monitoring scheme can save a lot of human efforts, and could be particularly useful in those processes which can only provide a small portion of evaluated data samples in time. The feasibility and efficiency of the new proposed monitoring scheme are examined through case studies of a numerical example and the TE benchmark process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小木小夕完成签到 ,获得积分10
2秒前
张丹发布了新的文献求助10
2秒前
2秒前
3秒前
安医清嘉发布了新的文献求助10
4秒前
脑洞疼应助酷炫的紫山采纳,获得10
4秒前
hailey完成签到,获得积分10
4秒前
英俊的铭应助张美丽采纳,获得10
5秒前
Ttttt完成签到,获得积分20
7秒前
7秒前
123发布了新的文献求助10
8秒前
1024发布了新的文献求助10
8秒前
从容襄发布了新的文献求助50
8秒前
9秒前
Eclipse12138完成签到,获得积分10
9秒前
共享精神应助为Zn发电采纳,获得10
10秒前
11秒前
852应助美满的无敌采纳,获得10
11秒前
wxy完成签到,获得积分10
11秒前
Sundystar完成签到,获得积分10
12秒前
科研通AI5应助Ryan采纳,获得30
14秒前
14秒前
赘婿应助123采纳,获得10
14秒前
14秒前
Bowman发布了新的文献求助10
15秒前
15秒前
MoonKnight发布了新的文献求助10
18秒前
18秒前
19秒前
朵丫发布了新的文献求助10
19秒前
科研通AI5应助落雨采纳,获得10
19秒前
04完成签到 ,获得积分10
20秒前
华仔应助及禾采纳,获得10
21秒前
Yange完成签到,获得积分10
23秒前
自觉秋凌发布了新的文献求助10
24秒前
YY发布了新的文献求助30
24秒前
MoonKnight完成签到,获得积分10
24秒前
fei关注了科研通微信公众号
24秒前
04关注了科研通微信公众号
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4562263
求助须知:如何正确求助?哪些是违规求助? 3987469
关于积分的说明 12346754
捐赠科研通 3658258
什么是DOI,文献DOI怎么找? 2015706
邀请新用户注册赠送积分活动 1050303
科研通“疑难数据库(出版商)”最低求助积分说明 938314