吞吐量
计算机科学
高熵合金
机器学习
人工智能
材料科学
冶金
合金
电信
无线
作者
Lu Zhichao,Dong Ma,Liu Xiongjun,Zhaoping Lü
标识
DOI:10.1038/s43246-024-00487-3
摘要
Abstract High-entropy alloys (HEAs) have attracted extensive attention in recent decades due to their unique chemical, physical, and mechanical properties. An in-depth understanding of the structure–property relationship in HEAs is the key to the discovery and design of new compositions with desirable properties. Related to this, materials genome strategy has been increasingly used for discovering new HEAs with better performance. This review paper provides an overview of key advances in this fast-growing area, along with current challenges and potential opportunities for HEAs. We also discuss related topics, such as high-throughput preparation, characterization, and computation of HEAs, and data-driven machine learning for accelerating alloy development. Finally, future research directions and perspectives for the materials genome-assisted design of HEAs are proposed and discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI