材料科学
光电探测器
红外线的
硅
石墨烯
光电子学
外延
纳米技术
光学
物理
图层(电子)
作者
Zongwen Li,Xiaoxue Cao,Zhixiang Zhang,Baoshi Qiao,Feng Tian,Yue Dai,Srikrishna Chanakya Bodepudi,Xinyu Liu,Jian Chai,Dajian Liu,Muhammad Abid Anwar,Xun Han,Fei Xue,Wenzhang Fang,Yaping Dan,Yuda Zhao,Huan Hu,Bin Yu,Chao Gao,Yang Xu
标识
DOI:10.1002/adom.202400335
摘要
Abstract 2D materials and their heterostructures exhibit considerable potential in the development of avalanche photodetectors (APDs) with high gain, response, and signal‐to‐noise ratio. These materials hold promise in addressing inherent technical challenges associated with APDs, such as low light absorption coefficient, elevated noise current, and substantial power consumption due to high bias resulting in only moderate current gain. In this work, a macro‐assembled graphene nanofilm (nMAG)/epitaxial silicon (epi‐Si) vertical heterostructure photodetector with a responsivity of 0.38 A W −1 and a response time of 1.4 µs is reported. The photodetectors use high‐quality nMAG as the absorption layer and a lightly‐doped epi‐Si layer as the multiplication region under the avalanche mode to provide a high responsivity (2.51 mA W −1 ) and detectivity (2.67 × 10 9 Jones) at 1550 nm, which can achieve high‐resolution imaging. In addition, the APD displays a weak noise level and an avalanche gain of M = 1123. It can work with relatively low avalanche turn‐on voltages and achieve self‐quenching by switching from illumination to dark during avalanche multiplication, with a real‐time data transfer rate of 38 Mbps in near‐infrared light communication data links. The proposed structure enables the fabrication of high‐performance APDs in the infrared range using complementary‐metal‐oxide‐semiconductor (CMOS)‐compatible processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI