Predicting and compensating for small-sample thermal information data in precision machine tools: A spatial-temporal interactive integration network and digital twin system approach

计算机科学 样品(材料) 数据挖掘 机器学习 人工智能 人机交互 色谱法 化学
作者
Zheng Wu,Chi Ma,Lang Zhang,Hongquan Gui,Jialan Liu,Zijie Liu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:161: 111760-111760 被引量:31
标识
DOI:10.1016/j.asoc.2024.111760
摘要

The thermal errors in ball screws present complex spatial-temporal characteristics and exhibit persistent long-term memory, significantly affecting the machining accuracy of the whole machine tool in applications. Deep learning has emerged as a promising approach to predict these errors using thermal data. However, the scarcity of extensive thermal datasets, typically due to the prohibitive costs and time required for experimental acquisition, hampers the comprehensive exploitation of spatial-temporal and long-term memory attributes. Moreover, the current thermal error compensation system does not support the deployment of deep learning-based thermal error models due to its weak real-time performance. These limitations lead to suboptimal prediction accuracy and inadequate error compensation. Addressing this challenge, a novel spatial-temporal interactive integration network is proposed, and this is a sophisticated model that synergistically blends a time memory gate and a spatial-temporal fusion gate within an advanced attention-based spatial-temporal graph convolutional framework. Our network ingeniously leverages spatial data to anchor long-term memory while employing temporal data for selective memory feature extraction, facilitating a refined integration of spatial-temporal features. Concurrently, the integration of gated recurrent units and a time attention layer meticulously extracts and enhances temporal features, bolstered by our innovative time memory gate, which is adept at handling small-sample scenarios and refining thermal error predictions. Critically, the digital twin system for thermal error compensation is constructed to improve the system's real-time performance. The integration of this network into the digital twin system marks a pivotal advancement in thermal error compensation. Our empirical results underscore the system's remarkable robustness and superior predictive accuracy, demonstrating a significant reduction in positioning and machining errors (over 90% and 80% respectively) even with constrained thermal data inputs. These advancements not only delineate a substantial leap in predictive accuracy but also underscore our contribution to reducing operational costs and enhancing the efficacy of machine tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫好好完成签到,获得积分10
刚刚
沉默的若云完成签到,获得积分10
刚刚
蜂蜜完成签到,获得积分10
1秒前
afeiwoo完成签到,获得积分10
2秒前
Chen完成签到,获得积分20
2秒前
呱呱小蛙完成签到 ,获得积分10
3秒前
大个应助zzz采纳,获得10
4秒前
voifhpg完成签到 ,获得积分10
4秒前
Akim应助阿光采纳,获得10
5秒前
研友_LX7478完成签到,获得积分10
5秒前
5秒前
kean1943完成签到,获得积分10
5秒前
6秒前
无患子发布了新的文献求助10
6秒前
8秒前
8秒前
xrkxrk完成签到 ,获得积分0
8秒前
英姑应助榭纶雯皓南采纳,获得10
8秒前
9秒前
10秒前
azai发布了新的文献求助10
10秒前
大梦想家完成签到,获得积分20
10秒前
10秒前
专注鸡完成签到,获得积分10
11秒前
小罗同学发布了新的文献求助10
11秒前
笛卡尔完成签到,获得积分10
12秒前
Clovis33完成签到 ,获得积分10
12秒前
请勿继续完成签到,获得积分10
12秒前
lizhiqian2024完成签到,获得积分10
13秒前
大吴克发布了新的文献求助10
14秒前
Uki完成签到,获得积分20
14秒前
Brad_AN完成签到,获得积分10
14秒前
黑宝坨完成签到 ,获得积分10
14秒前
常常完成签到,获得积分10
15秒前
高大的羽毛完成签到,获得积分10
15秒前
xtz完成签到,获得积分20
15秒前
15秒前
伍寒烟完成签到,获得积分10
16秒前
DyLan完成签到,获得积分10
16秒前
信仰完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910