亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting and compensating for small-sample thermal information data in precision machine tools: a spatial-temporal interactive integration network and digital twin system approach

计算机科学 样品(材料) 数据挖掘 机器学习 人工智能 人机交互 色谱法 化学
作者
Zheng Wu,Chi Ma,Lang Zhang,Hongquan Gui,Jialan Liu,Zijie Liu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:161: 111760-111760 被引量:8
标识
DOI:10.1016/j.asoc.2024.111760
摘要

The thermal errors in ball screws present complex spatial-temporal characteristics and exhibit persistent long-term memory, significantly affecting the machining accuracy of the whole machine tool in applications. Deep learning has emerged as a promising approach to predict these errors using thermal data. However, the scarcity of extensive thermal datasets, typically due to the prohibitive costs and time required for experimental acquisition, hampers the comprehensive exploitation of spatial-temporal and long-term memory attributes. Moreover, the current thermal error compensation system does not support the deployment of deep learning-based thermal error models due to its weak real-time performance. These limitations lead to suboptimal prediction accuracy and inadequate error compensation. Addressing this challenge, a novel spatial-temporal interactive integration network is proposed, and this is a sophisticated model that synergistically blends a time memory gate and a spatial-temporal fusion gate within an advanced attention-based spatial-temporal graph convolutional framework. Our network ingeniously leverages spatial data to anchor long-term memory while employing temporal data for selective memory feature extraction, facilitating a refined integration of spatial-temporal features. Concurrently, the integration of gated recurrent units and a time attention layer meticulously extracts and enhances temporal features, bolstered by our innovative time memory gate, which is adept at handling small-sample scenarios and refining thermal error predictions. Critically, the digital twin system for thermal error compensation is constructed to improve the system's real-time performance. The integration of this network into the digital twin system marks a pivotal advancement in thermal error compensation. Our empirical results underscore the system's remarkable robustness and superior predictive accuracy, demonstrating a significant reduction in positioning and machining errors (over 90% and 80% respectively) even with constrained thermal data inputs. These advancements not only delineate a substantial leap in predictive accuracy but also underscore our contribution to reducing operational costs and enhancing the efficacy of machine tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
15秒前
Ava应助chenan采纳,获得10
27秒前
45秒前
50秒前
sunxinfly发布了新的文献求助10
53秒前
1分钟前
懂炸天发布了新的文献求助10
1分钟前
苏小福发布了新的文献求助150
1分钟前
1分钟前
hey发布了新的文献求助10
1分钟前
铁头发布了新的文献求助10
1分钟前
chenan完成签到,获得积分20
1分钟前
1分钟前
2分钟前
2分钟前
CipherSage应助冷帅采纳,获得10
2分钟前
2分钟前
2分钟前
Willing完成签到 ,获得积分10
2分钟前
zqq完成签到,获得积分0
2分钟前
sht给shilihua的求助进行了留言
2分钟前
我是大皇帝完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
苏小福发布了新的文献求助10
2分钟前
淡然的香薇完成签到,获得积分10
2分钟前
清秀的之桃完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
冷帅发布了新的文献求助10
2分钟前
Ava应助苏小福采纳,获得30
2分钟前
2分钟前
2分钟前
lht发布了新的文献求助30
2分钟前
yar应助chenan采纳,获得10
2分钟前
慕青应助左旋采纳,获得10
2分钟前
miles完成签到,获得积分10
3分钟前
丘比特应助猴子没有壳采纳,获得10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445112
求助须知:如何正确求助?哪些是违规求助? 3041057
关于积分的说明 8983818
捐赠科研通 2729647
什么是DOI,文献DOI怎么找? 1497123
科研通“疑难数据库(出版商)”最低求助积分说明 692155
邀请新用户注册赠送积分活动 689674