A study on diversion behavior in weaving segments: Individualized traffic conflict prediction and causal mechanism analysis

机制(生物学) 编织 计算机科学 心理学 工程类 机械工程 认识论 哲学
作者
Renteng Yuan,Qiaojun Xiang,Qiaojun Xiang
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:205: 107681-107681 被引量:1
标识
DOI:10.1016/j.aap.2024.107681
摘要

Lane change behavior disrupts traffic flow and increases the potential for traffic conflicts, especially on expressway weaving segments. Focusing on the diversion process, this study incorporating individual driving patterns into conflict prediction and causation analysis can help develop individualized intervention measures to avoid risky diversion behaviors. First, to minimize measurement errors, this study introduces a lane line reconstruction method. Second, several unsupervised clustering methods, including k-means, agglomerative clustering, gaussian mixture, and spectral clustering, are applied to explore diversion patterns. Moreover, machine learning methods, including Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Attention-based LSTM, eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), are employed for real-time traffic conflict prediction. Finally, mixed logit models are developed using pre-conflict condition data to investigate the causal mechanisms of traffic conflicts. The results indicate that the K-means algorithm with four clusters exhibits the highest Calinski-Harabasz and Silhouette scores and the lowest Davies-Bouldin scores. With superior classification accuracy and generalization ability, the LSTM is used to develop the personalized traffic conflict prediction model. Sensitivity analysis indicates that incorporating the diversion patterns into the LSTM model results in an improvement of 3.64% in Accuracy, 7.15% in Precision, and 1.34% in Recall. Results from the four mixed logit models indicate significant differences in factors contributing to traffic conflicts within each diversion pattern. For instance, increasing the speed difference between the target vehicle and the right preceding vehicle benefits traffic conflict during acceleration diversions but decreases the likelihood of traffic conflicts during deceleration diversions. These results can help traffic engineers propose individualized solutions to reduce unsafe diversion behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxx发布了新的文献求助10
1秒前
科研通AI5应助nuliya采纳,获得10
1秒前
kira完成签到,获得积分10
2秒前
刘星星发布了新的文献求助30
3秒前
3秒前
3秒前
3秒前
汉堡包应助LYM采纳,获得10
3秒前
吉势甘发布了新的文献求助10
3秒前
zhu应助七块采纳,获得10
4秒前
5秒前
SweepingMonk应助kkkkkw采纳,获得10
5秒前
Summer完成签到,获得积分10
5秒前
研友_VZG7GZ应助starryxm采纳,获得10
5秒前
5秒前
WilsonT发布了新的文献求助20
5秒前
3-HP完成签到,获得积分10
5秒前
5秒前
kira发布了新的文献求助10
5秒前
大个应助丸子采纳,获得10
6秒前
EiRoco_0r完成签到,获得积分10
6秒前
wendinfgmei完成签到,获得积分10
6秒前
6秒前
7秒前
小前途完成签到,获得积分10
7秒前
大方小白发布了新的文献求助10
7秒前
S1mple_gentleman完成签到,获得积分10
8秒前
8秒前
8秒前
啊大大哇发布了新的文献求助10
9秒前
Jenny应助lan采纳,获得10
9秒前
小前途发布了新的文献求助10
10秒前
zino发布了新的文献求助10
10秒前
好好完成签到,获得积分10
10秒前
科研通AI5应助keigo采纳,获得10
10秒前
11秒前
Blaseaka完成签到 ,获得积分10
11秒前
xiu发布了新的文献求助10
11秒前
Anne应助zzzzzk采纳,获得10
11秒前
迟大猫应助细腻白柏采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678