A study on diversion behavior in weaving segments: Individualized traffic conflict prediction and causal mechanism analysis

机制(生物学) 编织 计算机科学 心理学 工程类 机械工程 认识论 哲学
作者
Renteng Yuan,Qiaojun Xiang,Qiaojun Xiang
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:205: 107681-107681 被引量:1
标识
DOI:10.1016/j.aap.2024.107681
摘要

Lane change behavior disrupts traffic flow and increases the potential for traffic conflicts, especially on expressway weaving segments. Focusing on the diversion process, this study incorporating individual driving patterns into conflict prediction and causation analysis can help develop individualized intervention measures to avoid risky diversion behaviors. First, to minimize measurement errors, this study introduces a lane line reconstruction method. Second, several unsupervised clustering methods, including k-means, agglomerative clustering, gaussian mixture, and spectral clustering, are applied to explore diversion patterns. Moreover, machine learning methods, including Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Attention-based LSTM, eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), are employed for real-time traffic conflict prediction. Finally, mixed logit models are developed using pre-conflict condition data to investigate the causal mechanisms of traffic conflicts. The results indicate that the K-means algorithm with four clusters exhibits the highest Calinski-Harabasz and Silhouette scores and the lowest Davies-Bouldin scores. With superior classification accuracy and generalization ability, the LSTM is used to develop the personalized traffic conflict prediction model. Sensitivity analysis indicates that incorporating the diversion patterns into the LSTM model results in an improvement of 3.64% in Accuracy, 7.15% in Precision, and 1.34% in Recall. Results from the four mixed logit models indicate significant differences in factors contributing to traffic conflicts within each diversion pattern. For instance, increasing the speed difference between the target vehicle and the right preceding vehicle benefits traffic conflict during acceleration diversions but decreases the likelihood of traffic conflicts during deceleration diversions. These results can help traffic engineers propose individualized solutions to reduce unsafe diversion behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LiCY发布了新的文献求助10
刚刚
林蓥颖发布了新的文献求助20
刚刚
张潇赫发布了新的文献求助10
刚刚
傲娇千亦完成签到 ,获得积分10
刚刚
刚刚
cdercder应助任性舞蹈采纳,获得10
1秒前
1秒前
俺不叫我姜饼完成签到,获得积分10
1秒前
1秒前
尼古拉斯铁柱完成签到 ,获得积分10
2秒前
香蕉觅云应助wm采纳,获得10
2秒前
白格关注了科研通微信公众号
2秒前
2秒前
liu发布了新的文献求助10
3秒前
asfos发布了新的文献求助10
3秒前
cfhjfvg完成签到,获得积分20
4秒前
4秒前
Joan发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
浮游应助Promise采纳,获得10
5秒前
清瑜完成签到,获得积分10
5秒前
纯真以晴完成签到,获得积分10
5秒前
华仔应助斯文念波采纳,获得10
6秒前
8秒前
8秒前
ww挽风完成签到 ,获得积分10
9秒前
9秒前
wang发布了新的文献求助10
9秒前
稳重大米发布了新的文献求助30
9秒前
张潇赫完成签到,获得积分10
9秒前
邢志成完成签到,获得积分10
9秒前
深情安青应助liu采纳,获得10
10秒前
鱼在哪儿发布了新的文献求助10
10秒前
延可发布了新的文献求助10
11秒前
羊羊羊完成签到 ,获得积分10
12秒前
12秒前
kk2发布了新的文献求助10
12秒前
12秒前
CHN完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406216
求助须知:如何正确求助?哪些是违规求助? 4524308
关于积分的说明 14097238
捐赠科研通 4438066
什么是DOI,文献DOI怎么找? 2435946
邀请新用户注册赠送积分活动 1428078
关于科研通互助平台的介绍 1406280