A study on diversion behavior in weaving segments: Individualized traffic conflict prediction and causal mechanism analysis

机制(生物学) 编织 计算机科学 心理学 工程类 机械工程 认识论 哲学
作者
Renteng Yuan,Qiaojun Xiang,Qiaojun Xiang
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:205: 107681-107681 被引量:1
标识
DOI:10.1016/j.aap.2024.107681
摘要

Lane change behavior disrupts traffic flow and increases the potential for traffic conflicts, especially on expressway weaving segments. Focusing on the diversion process, this study incorporating individual driving patterns into conflict prediction and causation analysis can help develop individualized intervention measures to avoid risky diversion behaviors. First, to minimize measurement errors, this study introduces a lane line reconstruction method. Second, several unsupervised clustering methods, including k-means, agglomerative clustering, gaussian mixture, and spectral clustering, are applied to explore diversion patterns. Moreover, machine learning methods, including Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Attention-based LSTM, eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), are employed for real-time traffic conflict prediction. Finally, mixed logit models are developed using pre-conflict condition data to investigate the causal mechanisms of traffic conflicts. The results indicate that the K-means algorithm with four clusters exhibits the highest Calinski-Harabasz and Silhouette scores and the lowest Davies-Bouldin scores. With superior classification accuracy and generalization ability, the LSTM is used to develop the personalized traffic conflict prediction model. Sensitivity analysis indicates that incorporating the diversion patterns into the LSTM model results in an improvement of 3.64% in Accuracy, 7.15% in Precision, and 1.34% in Recall. Results from the four mixed logit models indicate significant differences in factors contributing to traffic conflicts within each diversion pattern. For instance, increasing the speed difference between the target vehicle and the right preceding vehicle benefits traffic conflict during acceleration diversions but decreases the likelihood of traffic conflicts during deceleration diversions. These results can help traffic engineers propose individualized solutions to reduce unsafe diversion behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李楠完成签到,获得积分10
3秒前
漂亮的倒挂金钩完成签到,获得积分10
3秒前
5秒前
5秒前
朴实以松发布了新的文献求助10
5秒前
5秒前
123发布了新的文献求助10
8秒前
zqy完成签到 ,获得积分10
8秒前
8秒前
9秒前
可靠的纸鹤完成签到,获得积分20
9秒前
9秒前
共享精神应助undertaker采纳,获得10
10秒前
0腿0发布了新的文献求助10
10秒前
一一发布了新的文献求助10
12秒前
乐乐应助羊羽采纳,获得10
12秒前
mmyhn应助sirius采纳,获得10
13秒前
中中发布了新的文献求助10
14秒前
14秒前
123完成签到,获得积分10
15秒前
YOLO发布了新的文献求助10
15秒前
16秒前
清脆以旋完成签到,获得积分10
18秒前
我是老大应助朴实的晓筠采纳,获得10
18秒前
18秒前
浅尝离白应助123采纳,获得10
19秒前
枫威完成签到 ,获得积分10
20秒前
0腿0完成签到,获得积分10
20秒前
天天快乐应助青木yi采纳,获得10
21秒前
JamesPei应助小曹采纳,获得10
21秒前
PTF发布了新的文献求助10
23秒前
23秒前
23秒前
轻松的鸿煊完成签到 ,获得积分10
26秒前
26秒前
sirius完成签到,获得积分10
26秒前
aaa0001984发布了新的文献求助10
28秒前
linnea完成签到,获得积分10
30秒前
PTF完成签到,获得积分10
35秒前
英俊的铭应助Ethan采纳,获得10
37秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142187
求助须知:如何正确求助?哪些是违规求助? 2793134
关于积分的说明 7805663
捐赠科研通 2449433
什么是DOI,文献DOI怎么找? 1303289
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291