A study on diversion behavior in weaving segments: Individualized traffic conflict prediction and causal mechanism analysis

机制(生物学) 编织 计算机科学 心理学 工程类 机械工程 认识论 哲学
作者
Renteng Yuan,Qiaojun Xiang,Qiaojun Xiang
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:205: 107681-107681 被引量:1
标识
DOI:10.1016/j.aap.2024.107681
摘要

Lane change behavior disrupts traffic flow and increases the potential for traffic conflicts, especially on expressway weaving segments. Focusing on the diversion process, this study incorporating individual driving patterns into conflict prediction and causation analysis can help develop individualized intervention measures to avoid risky diversion behaviors. First, to minimize measurement errors, this study introduces a lane line reconstruction method. Second, several unsupervised clustering methods, including k-means, agglomerative clustering, gaussian mixture, and spectral clustering, are applied to explore diversion patterns. Moreover, machine learning methods, including Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Attention-based LSTM, eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), are employed for real-time traffic conflict prediction. Finally, mixed logit models are developed using pre-conflict condition data to investigate the causal mechanisms of traffic conflicts. The results indicate that the K-means algorithm with four clusters exhibits the highest Calinski-Harabasz and Silhouette scores and the lowest Davies-Bouldin scores. With superior classification accuracy and generalization ability, the LSTM is used to develop the personalized traffic conflict prediction model. Sensitivity analysis indicates that incorporating the diversion patterns into the LSTM model results in an improvement of 3.64% in Accuracy, 7.15% in Precision, and 1.34% in Recall. Results from the four mixed logit models indicate significant differences in factors contributing to traffic conflicts within each diversion pattern. For instance, increasing the speed difference between the target vehicle and the right preceding vehicle benefits traffic conflict during acceleration diversions but decreases the likelihood of traffic conflicts during deceleration diversions. These results can help traffic engineers propose individualized solutions to reduce unsafe diversion behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ytru完成签到,获得积分10
2秒前
倪妮发布了新的文献求助10
2秒前
echo完成签到 ,获得积分10
3秒前
4秒前
ELITOmiko完成签到,获得积分10
5秒前
6秒前
文静昊强发布了新的文献求助10
6秒前
悲凉的白秋完成签到 ,获得积分10
7秒前
火树银花完成签到,获得积分10
7秒前
8秒前
天蛤人完成签到,获得积分10
9秒前
狼牙月完成签到,获得积分10
11秒前
12秒前
ycool完成签到 ,获得积分10
12秒前
悲凉的白秋关注了科研通微信公众号
12秒前
他芯通完成签到,获得积分10
12秒前
14秒前
15秒前
wkb完成签到,获得积分20
15秒前
量子星尘发布了新的文献求助50
16秒前
17秒前
17秒前
聂白晴发布了新的文献求助10
19秒前
TTUTT完成签到,获得积分10
19秒前
yeezy123发布了新的文献求助10
20秒前
含有多种蔬菜的肉罐头完成签到,获得积分10
20秒前
陌路人完成签到,获得积分10
20秒前
20秒前
wanci应助樱之艺术家采纳,获得10
21秒前
小莹完成签到,获得积分10
22秒前
SciGPT应助YiWei采纳,获得10
22秒前
fsz发布了新的文献求助10
23秒前
23秒前
24秒前
白鸽鸽完成签到,获得积分10
25秒前
omennnm完成签到,获得积分20
25秒前
畅快的飞鸟关注了科研通微信公众号
28秒前
十一发布了新的文献求助10
28秒前
wkb发布了新的文献求助10
29秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142593
求助须知:如何正确求助?哪些是违规求助? 4340821
关于积分的说明 13518386
捐赠科研通 4180828
什么是DOI,文献DOI怎么找? 2292600
邀请新用户注册赠送积分活动 1293261
关于科研通互助平台的介绍 1235765