A study on diversion behavior in weaving segments: Individualized traffic conflict prediction and causal mechanism analysis

机制(生物学) 编织 计算机科学 心理学 工程类 机械工程 认识论 哲学
作者
Renteng Yuan,Qiaojun Xiang,Qiaojun Xiang
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:205: 107681-107681 被引量:1
标识
DOI:10.1016/j.aap.2024.107681
摘要

Lane change behavior disrupts traffic flow and increases the potential for traffic conflicts, especially on expressway weaving segments. Focusing on the diversion process, this study incorporating individual driving patterns into conflict prediction and causation analysis can help develop individualized intervention measures to avoid risky diversion behaviors. First, to minimize measurement errors, this study introduces a lane line reconstruction method. Second, several unsupervised clustering methods, including k-means, agglomerative clustering, gaussian mixture, and spectral clustering, are applied to explore diversion patterns. Moreover, machine learning methods, including Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Attention-based LSTM, eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), are employed for real-time traffic conflict prediction. Finally, mixed logit models are developed using pre-conflict condition data to investigate the causal mechanisms of traffic conflicts. The results indicate that the K-means algorithm with four clusters exhibits the highest Calinski-Harabasz and Silhouette scores and the lowest Davies-Bouldin scores. With superior classification accuracy and generalization ability, the LSTM is used to develop the personalized traffic conflict prediction model. Sensitivity analysis indicates that incorporating the diversion patterns into the LSTM model results in an improvement of 3.64% in Accuracy, 7.15% in Precision, and 1.34% in Recall. Results from the four mixed logit models indicate significant differences in factors contributing to traffic conflicts within each diversion pattern. For instance, increasing the speed difference between the target vehicle and the right preceding vehicle benefits traffic conflict during acceleration diversions but decreases the likelihood of traffic conflicts during deceleration diversions. These results can help traffic engineers propose individualized solutions to reduce unsafe diversion behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
月亮邮递员应助Guozixin采纳,获得50
刚刚
13633501455完成签到 ,获得积分10
1秒前
南倾发布了新的文献求助10
1秒前
2秒前
胡杨柳完成签到 ,获得积分10
2秒前
jiangchuansm完成签到,获得积分10
2秒前
李明月完成签到,获得积分10
2秒前
lalala发布了新的文献求助10
5秒前
5秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
bian发布了新的文献求助30
8秒前
白江恒发布了新的文献求助10
8秒前
KComboN发布了新的文献求助10
10秒前
浮游应助myc采纳,获得10
11秒前
lalala发布了新的文献求助10
12秒前
13秒前
善学以致用应助健忘无声采纳,获得50
16秒前
pangzou发布了新的文献求助10
16秒前
17秒前
我是老大应助诸葛一笑采纳,获得10
18秒前
lalala发布了新的文献求助10
19秒前
拜拜啦完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
25秒前
lalala发布了新的文献求助10
28秒前
wzc发布了新的文献求助10
28秒前
29秒前
orixero应助科研通管家采纳,获得10
29秒前
Hello应助Firmian采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
赘婿应助科研通管家采纳,获得10
30秒前
陈末应助科研通管家采纳,获得10
30秒前
ho应助科研通管家采纳,获得10
30秒前
30秒前
iqa完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425872
求助须知:如何正确求助?哪些是违规求助? 4539598
关于积分的说明 14169356
捐赠科研通 4457359
什么是DOI,文献DOI怎么找? 2444499
邀请新用户注册赠送积分活动 1435428
关于科研通互助平台的介绍 1412877