A study on diversion behavior in weaving segments: Individualized traffic conflict prediction and causal mechanism analysis

机制(生物学) 编织 计算机科学 心理学 工程类 机械工程 认识论 哲学
作者
Renteng Yuan,Qiaojun Xiang,Qiaojun Xiang
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:205: 107681-107681 被引量:1
标识
DOI:10.1016/j.aap.2024.107681
摘要

Lane change behavior disrupts traffic flow and increases the potential for traffic conflicts, especially on expressway weaving segments. Focusing on the diversion process, this study incorporating individual driving patterns into conflict prediction and causation analysis can help develop individualized intervention measures to avoid risky diversion behaviors. First, to minimize measurement errors, this study introduces a lane line reconstruction method. Second, several unsupervised clustering methods, including k-means, agglomerative clustering, gaussian mixture, and spectral clustering, are applied to explore diversion patterns. Moreover, machine learning methods, including Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Attention-based LSTM, eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), are employed for real-time traffic conflict prediction. Finally, mixed logit models are developed using pre-conflict condition data to investigate the causal mechanisms of traffic conflicts. The results indicate that the K-means algorithm with four clusters exhibits the highest Calinski-Harabasz and Silhouette scores and the lowest Davies-Bouldin scores. With superior classification accuracy and generalization ability, the LSTM is used to develop the personalized traffic conflict prediction model. Sensitivity analysis indicates that incorporating the diversion patterns into the LSTM model results in an improvement of 3.64% in Accuracy, 7.15% in Precision, and 1.34% in Recall. Results from the four mixed logit models indicate significant differences in factors contributing to traffic conflicts within each diversion pattern. For instance, increasing the speed difference between the target vehicle and the right preceding vehicle benefits traffic conflict during acceleration diversions but decreases the likelihood of traffic conflicts during deceleration diversions. These results can help traffic engineers propose individualized solutions to reduce unsafe diversion behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李狗蛋完成签到 ,获得积分10
1秒前
坚强百招关注了科研通微信公众号
1秒前
Jing完成签到,获得积分10
2秒前
深情安青应助scanker1981采纳,获得30
3秒前
无花果应助yqsf789采纳,获得10
4秒前
英俊的铭应助均儒采纳,获得10
5秒前
5秒前
陈宝妮完成签到,获得积分10
5秒前
6菲完成签到,获得积分10
6秒前
ling完成签到,获得积分10
6秒前
王耀武完成签到,获得积分10
6秒前
图图完成签到,获得积分10
6秒前
Medicovv发布了新的文献求助10
7秒前
简单的可乐完成签到,获得积分10
8秒前
10秒前
xiaoyu发布了新的文献求助10
10秒前
文静的摩托完成签到,获得积分10
11秒前
12秒前
SciGPT应助sillyforce采纳,获得10
12秒前
14秒前
完美世界应助kekekeke采纳,获得10
15秒前
哦哦完成签到 ,获得积分10
15秒前
清栀发布了新的文献求助10
16秒前
wjp发布了新的文献求助20
16秒前
21秒前
Medicovv完成签到,获得积分10
21秒前
21秒前
ymx关注了科研通微信公众号
24秒前
浮游应助Philip采纳,获得10
24秒前
含糊的葶完成签到,获得积分10
24秒前
25秒前
zyn完成签到,获得积分10
26秒前
科研通AI2S应助感动的念双采纳,获得10
27秒前
27秒前
29秒前
tutu发布了新的文献求助10
29秒前
32秒前
34秒前
音殿完成签到 ,获得积分10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307071
求助须知:如何正确求助?哪些是违规求助? 4452821
关于积分的说明 13855266
捐赠科研通 4340389
什么是DOI,文献DOI怎么找? 2383146
邀请新用户注册赠送积分活动 1378006
关于科研通互助平台的介绍 1345825