A LIBSVM quality assessment model for apple spoilage during storage based on hyperspectral data

马氏距离 高光谱成像 食物腐败 水准点(测量) 质量(理念) 计算机科学 特征(语言学) 人工智能 数据挖掘 模式识别(心理学) 生物 地理 认识论 哲学 遗传学 语言学 细菌 大地测量学
作者
Zhihao Wang,Yong Yin,Huichun Yu,Yunxia Yuan
出处
期刊:Analytical Methods [The Royal Society of Chemistry]
卷期号:16 (28): 4765-4774
标识
DOI:10.1039/d4ay00678j
摘要

To assess the quality of apple samples during storage, this study proposes a spoilage benchmark based on hyperspectral data feature indicators and the Mahalanobis Distance (MD). Additionally, a quality assessment model was developed utilizing LIB Support Vector Machine (LIBSVM). Initially, a spoilage benchmark for apple samples was preliminarily established using hyperspectral data feature indicators, including the color feature, texture feature of sample hyperspectral images, and wavelet packet energy (WPE) of sample spectral information. Secondly, this study utilized the successive projection algorithm (SPA) to extract three wavelength sets sensitive to changes in the three indicators. This process resulted in the identification of 20 feature wavelengths based on the three sets. Subsequently, the spoilage benchmark for apple samples was verified using MD based on the spectral information of feature wavelengths. Ultimately, utilizing pre-processed spectral information enhanced by the sliding window algorithm and spoilage benchmark, the LIBSVM quality assessment model was developed, achieving a training set accuracy of 99.94% and a test set accuracy of 99.66%. Moreover, to assess the strength and applicability of the model, a verification experiment was conducted using a different set of apple samples. The training set accuracy was 100% and the test set accuracy was 99.83%. These findings indicate that the model can effectively indicate the level of spoilage in each sample during long-term storage. This also serves to demonstrate the robustness of the model and the effectiveness of the spoilage benchmark determination method during apple storage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哦哦哦哦哦关注了科研通微信公众号
3秒前
3秒前
kanglan完成签到,获得积分10
4秒前
CodeCraft应助aliu采纳,获得30
4秒前
安琦发布了新的文献求助10
4秒前
60岁刚当博导完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
万能图书馆应助walawala采纳,获得10
6秒前
6秒前
丁智豪发布了新的文献求助10
7秒前
等天黑发布了新的文献求助10
7秒前
laurel发布了新的文献求助20
8秒前
11完成签到,获得积分10
8秒前
bodao发布了新的文献求助10
9秒前
9秒前
打打应助张楚岚采纳,获得10
9秒前
s0x0y0发布了新的文献求助10
10秒前
上善若水发布了新的文献求助10
11秒前
SSD发布了新的文献求助10
11秒前
福娃选手发布了新的文献求助10
11秒前
12秒前
lps发布了新的文献求助10
13秒前
TingtingGZ完成签到,获得积分10
13秒前
13秒前
紫薰完成签到,获得积分10
13秒前
13秒前
tutou发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
shuiyu发布了新的文献求助10
16秒前
16秒前
星期一发布了新的文献求助10
16秒前
jagger发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536474
求助须知:如何正确求助?哪些是违规求助? 4624146
关于积分的说明 14590801
捐赠科研通 4564532
什么是DOI,文献DOI怎么找? 2501843
邀请新用户注册赠送积分活动 1480597
关于科研通互助平台的介绍 1451838