A LIBSVM quality assessment model for apple spoilage during storage based on hyperspectral data

马氏距离 高光谱成像 食物腐败 水准点(测量) 质量(理念) 计算机科学 特征(语言学) 人工智能 数据挖掘 模式识别(心理学) 生物 地理 哲学 遗传学 认识论 细菌 语言学 大地测量学
作者
Zhihao Wang,Yong Yin,Huichun Yu,Yunxia Yuan
出处
期刊:Analytical Methods [The Royal Society of Chemistry]
卷期号:16 (28): 4765-4774
标识
DOI:10.1039/d4ay00678j
摘要

To assess the quality of apple samples during storage, this study proposes a spoilage benchmark based on hyperspectral data feature indicators and the Mahalanobis Distance (MD). Additionally, a quality assessment model was developed utilizing LIB Support Vector Machine (LIBSVM). Initially, a spoilage benchmark for apple samples was preliminarily established using hyperspectral data feature indicators, including the color feature, texture feature of sample hyperspectral images, and wavelet packet energy (WPE) of sample spectral information. Secondly, this study utilized the successive projection algorithm (SPA) to extract three wavelength sets sensitive to changes in the three indicators. This process resulted in the identification of 20 feature wavelengths based on the three sets. Subsequently, the spoilage benchmark for apple samples was verified using MD based on the spectral information of feature wavelengths. Ultimately, utilizing pre-processed spectral information enhanced by the sliding window algorithm and spoilage benchmark, the LIBSVM quality assessment model was developed, achieving a training set accuracy of 99.94% and a test set accuracy of 99.66%. Moreover, to assess the strength and applicability of the model, a verification experiment was conducted using a different set of apple samples. The training set accuracy was 100% and the test set accuracy was 99.83%. These findings indicate that the model can effectively indicate the level of spoilage in each sample during long-term storage. This also serves to demonstrate the robustness of the model and the effectiveness of the spoilage benchmark determination method during apple storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷平蓝发布了新的文献求助10
1秒前
2秒前
4秒前
安静的瑾瑜完成签到 ,获得积分10
4秒前
MOMO完成签到 ,获得积分10
4秒前
4秒前
5秒前
Kris发布了新的文献求助10
8秒前
fountainli发布了新的文献求助50
9秒前
疯少发布了新的文献求助10
10秒前
11秒前
CY完成签到,获得积分10
11秒前
深情安青应助2024论文计划采纳,获得30
12秒前
SciGPT应助迅速灵竹采纳,获得10
12秒前
13秒前
小扬仔21发布了新的文献求助10
14秒前
科研通AI2S应助吴雨木目采纳,获得10
14秒前
YHQ完成签到,获得积分10
15秒前
年年年年发布了新的文献求助10
16秒前
17秒前
Zeeshan关注了科研通微信公众号
17秒前
abrakadabra完成签到,获得积分10
18秒前
Lucas应助Nevaeh采纳,获得10
20秒前
20秒前
Jau完成签到,获得积分0
20秒前
班里发布了新的文献求助10
20秒前
22秒前
22秒前
22秒前
宋泽艺完成签到 ,获得积分10
22秒前
24秒前
小二郎应助阳阳采纳,获得10
25秒前
科研通AI2S应助迪迦采纳,获得10
25秒前
LXB发布了新的文献求助10
26秒前
忱麓裔发布了新的文献求助10
26秒前
迅速灵竹发布了新的文献求助10
27秒前
27秒前
28秒前
28秒前
兔子云完成签到 ,获得积分10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505877
捐赠科研通 2616792
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648999