A LIBSVM quality assessment model for apple spoilage during storage based on hyperspectral data

马氏距离 高光谱成像 食物腐败 水准点(测量) 质量(理念) 计算机科学 特征(语言学) 人工智能 数据挖掘 模式识别(心理学) 生物 地理 认识论 哲学 遗传学 语言学 细菌 大地测量学
作者
Zhihao Wang,Yong Yin,Huichun Yu,Yunxia Yuan
出处
期刊:Analytical Methods [Royal Society of Chemistry]
卷期号:16 (28): 4765-4774
标识
DOI:10.1039/d4ay00678j
摘要

To assess the quality of apple samples during storage, this study proposes a spoilage benchmark based on hyperspectral data feature indicators and the Mahalanobis Distance (MD). Additionally, a quality assessment model was developed utilizing LIB Support Vector Machine (LIBSVM). Initially, a spoilage benchmark for apple samples was preliminarily established using hyperspectral data feature indicators, including the color feature, texture feature of sample hyperspectral images, and wavelet packet energy (WPE) of sample spectral information. Secondly, this study utilized the successive projection algorithm (SPA) to extract three wavelength sets sensitive to changes in the three indicators. This process resulted in the identification of 20 feature wavelengths based on the three sets. Subsequently, the spoilage benchmark for apple samples was verified using MD based on the spectral information of feature wavelengths. Ultimately, utilizing pre-processed spectral information enhanced by the sliding window algorithm and spoilage benchmark, the LIBSVM quality assessment model was developed, achieving a training set accuracy of 99.94% and a test set accuracy of 99.66%. Moreover, to assess the strength and applicability of the model, a verification experiment was conducted using a different set of apple samples. The training set accuracy was 100% and the test set accuracy was 99.83%. These findings indicate that the model can effectively indicate the level of spoilage in each sample during long-term storage. This also serves to demonstrate the robustness of the model and the effectiveness of the spoilage benchmark determination method during apple storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jichao完成签到,获得积分10
刚刚
sevenseven完成签到,获得积分10
1秒前
lzg完成签到,获得积分10
1秒前
zhuxiaonian完成签到,获得积分10
1秒前
汤圆完成签到,获得积分10
2秒前
小蘑菇应助喜庆采纳,获得10
2秒前
周娅敏发布了新的文献求助10
2秒前
3秒前
sgs完成签到,获得积分10
3秒前
自行输入昵称完成签到 ,获得积分10
4秒前
戚薇发布了新的文献求助10
4秒前
彭于晏应助sonder采纳,获得10
4秒前
宋嘉新完成签到,获得积分10
5秒前
Bran应助Ccc采纳,获得20
5秒前
5秒前
玛琪玛小姐的狗完成签到,获得积分10
5秒前
6秒前
6秒前
squirrel完成签到,获得积分10
6秒前
8秒前
TT完成签到,获得积分10
8秒前
爱因斯宣完成签到,获得积分20
10秒前
英俊的铭应助山雀采纳,获得10
10秒前
金枪鱼子发布了新的文献求助150
10秒前
豆子发布了新的文献求助20
10秒前
科研通AI2S应助Mansis采纳,获得10
11秒前
喜庆发布了新的文献求助10
11秒前
yangyang发布了新的文献求助10
11秒前
Lcccccc发布了新的文献求助10
11秒前
11秒前
11秒前
you发布了新的文献求助10
12秒前
12秒前
大气千柳关注了科研通微信公众号
12秒前
echo完成签到,获得积分10
12秒前
爆米花应助springwyc采纳,获得10
14秒前
鹿剑心完成签到 ,获得积分20
14秒前
14秒前
曲夜白完成签到 ,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582