Self-reconfigurable Multifunctional Memristive Nociceptor for Intelligent Robotics

机器人学 人工智能 伤害感受器 记忆电阻器 计算机科学 纳米技术 工程类 机器人 材料科学 医学 电气工程 伤害 内科学 受体
作者
Shengbo Wang,Mingchao Fang,Lekai Song,Cong Li,Jian Zhang,Arokia Nathan,Guohua Hu,Shuo Gao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.09304
摘要

Artificial nociceptors, mimicking human-like stimuli perception, are of significance for intelligent robotics to work in hazardous and dynamic scenarios. One of the most essential characteristics of the human nociceptor is its self-adjustable attribute, which indicates that the threshold of determination of a potentially hazardous stimulus relies on environmental knowledge. This critical attribute has been currently omitted, but it is highly desired for artificial nociceptors. Inspired by these shortcomings, this article presents, for the first time, a Self-Directed Channel (SDC) memristor-based self-reconfigurable nociceptor, capable of perceiving hazardous pressure stimuli under different temperatures and demonstrates key features of tactile nociceptors, including 'threshold,' 'no-adaptation,' and 'sensitization.' The maximum amplification of hazardous external stimuli is 1000%, and its response characteristics dynamically adapt to current temperature conditions by automatically altering the generated modulation schemes for the memristor. The maximum difference ratio of the response of memristors at different temperatures is 500%, and this adaptability closely mimics the functions of biological tactile nociceptors, resulting in accurate danger perception in various conditions. Beyond temperature adaptation, this memristor-based nociceptor has the potential to integrate different sensory modalities by applying various sensors, thereby achieving human-like perception capabilities in real-world environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
987发布了新的文献求助10
1秒前
我是老大应助longer采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
科目三应助cruise采纳,获得10
3秒前
顾矜应助张张赶紧看文献采纳,获得10
3秒前
6秒前
SciGPT应助勒恩梁采纳,获得10
6秒前
6秒前
传奇3应助123采纳,获得10
7秒前
7秒前
xxx发布了新的文献求助20
7秒前
www完成签到 ,获得积分10
8秒前
123完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
13秒前
wanci应助绝望的文盲采纳,获得10
13秒前
张张赶紧看文献完成签到,获得积分10
13秒前
13秒前
Hello应助不知名又又采纳,获得10
15秒前
15秒前
探花小狼发布了新的文献求助10
16秒前
16秒前
大模型应助YYY采纳,获得10
16秒前
17秒前
18秒前
乐乐应助xiangling1116采纳,获得20
18秒前
18秒前
Gao发布了新的文献求助10
18秒前
19秒前
勒恩梁发布了新的文献求助10
19秒前
达不刘发布了新的文献求助10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
cruise发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720875
求助须知:如何正确求助?哪些是违规求助? 5262673
关于积分的说明 15292448
捐赠科研通 4870116
什么是DOI,文献DOI怎么找? 2615251
邀请新用户注册赠送积分活动 1565182
关于科研通互助平台的介绍 1522256