Self-reconfigurable Multifunctional Memristive Nociceptor for Intelligent Robotics

机器人学 人工智能 伤害感受器 记忆电阻器 计算机科学 纳米技术 工程类 机器人 材料科学 医学 电气工程 伤害 内科学 受体
作者
Shengbo Wang,Mingchao Fang,Lekai Song,Cong Li,Jian Zhang,Arokia Nathan,Guohua Hu,Shuo Gao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.09304
摘要

Artificial nociceptors, mimicking human-like stimuli perception, are of significance for intelligent robotics to work in hazardous and dynamic scenarios. One of the most essential characteristics of the human nociceptor is its self-adjustable attribute, which indicates that the threshold of determination of a potentially hazardous stimulus relies on environmental knowledge. This critical attribute has been currently omitted, but it is highly desired for artificial nociceptors. Inspired by these shortcomings, this article presents, for the first time, a Self-Directed Channel (SDC) memristor-based self-reconfigurable nociceptor, capable of perceiving hazardous pressure stimuli under different temperatures and demonstrates key features of tactile nociceptors, including 'threshold,' 'no-adaptation,' and 'sensitization.' The maximum amplification of hazardous external stimuli is 1000%, and its response characteristics dynamically adapt to current temperature conditions by automatically altering the generated modulation schemes for the memristor. The maximum difference ratio of the response of memristors at different temperatures is 500%, and this adaptability closely mimics the functions of biological tactile nociceptors, resulting in accurate danger perception in various conditions. Beyond temperature adaptation, this memristor-based nociceptor has the potential to integrate different sensory modalities by applying various sensors, thereby achieving human-like perception capabilities in real-world environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丰富的听白完成签到,获得积分10
刚刚
zhonglv7应助满意花生采纳,获得10
1秒前
1秒前
2秒前
无极微光应助傲安采纳,获得20
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
Michelle完成签到,获得积分10
3秒前
3秒前
4秒前
摇摆小狗发布了新的文献求助10
4秒前
Lillian发布了新的文献求助30
4秒前
4秒前
英姑应助饶天源采纳,获得10
5秒前
5秒前
5秒前
M2106发布了新的文献求助10
5秒前
充电宝应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
香蕉诗蕊应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
7秒前
667788完成签到,获得积分10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
niNe3YUE应助科研通管家采纳,获得10
7秒前
白许四十完成签到,获得积分10
7秒前
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
la完成签到 ,获得积分10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
7秒前
田様应助Pa1mary采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
领导范儿应助现代水卉采纳,获得10
8秒前
纽曼发布了新的文献求助10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得50
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711456
求助须知:如何正确求助?哪些是违规求助? 5203871
关于积分的说明 15264340
捐赠科研通 4863728
什么是DOI,文献DOI怎么找? 2610906
邀请新用户注册赠送积分活动 1561227
关于科研通互助平台的介绍 1518627