Editorial: Assessment of Climate Change Impact on Water Resources Using Machine Learning Algorithms

气候变化 计算机科学 水资源 算法 机器学习 人工智能 环境科学 环境资源管理 海洋学 地质学 生态学 生物
作者
Majid Niazkar,Mohammad Zakwan,Mohammad Reza Goodarzi,Mohammad Azamathulla Hazi
出处
期刊:Journal of Water and Climate Change [IWA Publishing]
卷期号:15 (6): iii-vi 被引量:2
标识
DOI:10.2166/wcc.2024.002
摘要

Machine learning (ML) algorithms bring about a game changer tool in developing estimation models in various fields of research, including water resources and climate change.These techniques can be used for solving various problems when assessing climate change impacts on water resources.For instance, they can be utilized to downscale outputs of Global Climate Models (GCMs) to investigate climate change effects on hydroclimatic variables.Furthermore, ML can be employed to study variations of water quantity and quality under a changing climate.Moreover, they can be exploited to explore climate change impacts on rivers, groundwater, and water supply systems.Because of the importance of the topic, this special issue intends to provide an opportunity to collect recent investigations focusing on evaluating climate change impacts on water resources.The scientific peer-reviewed papers contributed to this special issue are summarized in the following:• Statistical computation for hydrological assessment of climate change Understanding how hydroclimatic variables change over time considering climate change impacts is crucial.Nguyen et al.(2023) evaluated two ML models, i.e., convolutional neural network (CNN) and long short-term memories (LSTM), for estimating hydroclimatic variables at the 3S River Basin.For assessing climate change impacts, three climate models, i.e., CMCC-CMS, HadGEM-AO2, and MIROC5, and two climate scenarios, i.e., Representative Concentration Pathways (RCPs) 4.5 and 8.5, were considered for three future periods.An increase in the mean annual temperature and fluctuations in the annual precipitation were detected.Furthermore, ML-based future projections yield a rise in the streamflow in the Srepok and Sesan Rivers, a reducing trend of streamflow in the Sekong, and increasing flood risk in the Sekong and Sesan basins.Patel & Mehta (2023) conducted a statistical analysis of climate change over the Hanumangarh district.They exploited (i) graphical (Innovative Trend Analysis method) and (ii) statistical (Mann-Kendall's test and Sen's Slope estimator) trend analysis methods to explore monthly, seasonal, and annual variations of precipitation for 122 years.Their results indicated an increasing trend in southwest monsoon season and annual precipitation based on the graphical trend analysis method, which was identified as the most robust model in their study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mumu完成签到,获得积分20
1秒前
爆米花应助科研1采纳,获得10
1秒前
1秒前
海豹发布了新的文献求助10
1秒前
蓦然回首完成签到,获得积分10
1秒前
勤劳如柏发布了新的文献求助30
1秒前
2秒前
2秒前
3秒前
3秒前
A梦完成签到,获得积分20
4秒前
Ff发布了新的文献求助10
5秒前
6秒前
Owen应助Harry采纳,获得10
6秒前
qqq发布了新的文献求助10
6秒前
7秒前
我没那么郝完成签到,获得积分10
7秒前
善学以致用应助海豹采纳,获得10
7秒前
如意安青完成签到,获得积分10
7秒前
7秒前
王大锤发布了新的文献求助10
7秒前
8秒前
8秒前
CIOOICO1发布了新的文献求助10
9秒前
负责雨灵完成签到,获得积分10
10秒前
爆米花应助飞飞飞采纳,获得10
10秒前
Planetary完成签到,获得积分10
12秒前
罗白翠发布了新的文献求助10
12秒前
12秒前
外向烤鸡发布了新的文献求助10
13秒前
在英快尔完成签到,获得积分10
13秒前
默默的妙竹完成签到 ,获得积分10
13秒前
红色流星完成签到 ,获得积分10
13秒前
hjyylab应助哒哒哒采纳,获得10
13秒前
领导范儿应助如意安青采纳,获得10
14秒前
orixero应助忧郁的宝川采纳,获得10
15秒前
16秒前
dzy完成签到,获得积分10
16秒前
Owen应助cherry采纳,获得10
16秒前
tc完成签到,获得积分20
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842080
求助须知:如何正确求助?哪些是违规求助? 3384261
关于积分的说明 10533503
捐赠科研通 3104566
什么是DOI,文献DOI怎么找? 1709737
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773970