Editorial: Assessment of Climate Change Impact on Water Resources Using Machine Learning Algorithms

气候变化 计算机科学 水资源 算法 机器学习 人工智能 环境科学 环境资源管理 海洋学 地质学 生态学 生物
作者
Majid Niazkar,Mohammad Zakwan,Mohammad Reza Goodarzi,Mohammad Azamathulla Hazi
出处
期刊:Journal of Water and Climate Change [IWA Publishing]
卷期号:15 (6): iii-vi 被引量:2
标识
DOI:10.2166/wcc.2024.002
摘要

Machine learning (ML) algorithms bring about a game changer tool in developing estimation models in various fields of research, including water resources and climate change.These techniques can be used for solving various problems when assessing climate change impacts on water resources.For instance, they can be utilized to downscale outputs of Global Climate Models (GCMs) to investigate climate change effects on hydroclimatic variables.Furthermore, ML can be employed to study variations of water quantity and quality under a changing climate.Moreover, they can be exploited to explore climate change impacts on rivers, groundwater, and water supply systems.Because of the importance of the topic, this special issue intends to provide an opportunity to collect recent investigations focusing on evaluating climate change impacts on water resources.The scientific peer-reviewed papers contributed to this special issue are summarized in the following:• Statistical computation for hydrological assessment of climate change Understanding how hydroclimatic variables change over time considering climate change impacts is crucial.Nguyen et al.(2023) evaluated two ML models, i.e., convolutional neural network (CNN) and long short-term memories (LSTM), for estimating hydroclimatic variables at the 3S River Basin.For assessing climate change impacts, three climate models, i.e., CMCC-CMS, HadGEM-AO2, and MIROC5, and two climate scenarios, i.e., Representative Concentration Pathways (RCPs) 4.5 and 8.5, were considered for three future periods.An increase in the mean annual temperature and fluctuations in the annual precipitation were detected.Furthermore, ML-based future projections yield a rise in the streamflow in the Srepok and Sesan Rivers, a reducing trend of streamflow in the Sekong, and increasing flood risk in the Sekong and Sesan basins.Patel & Mehta (2023) conducted a statistical analysis of climate change over the Hanumangarh district.They exploited (i) graphical (Innovative Trend Analysis method) and (ii) statistical (Mann-Kendall's test and Sen's Slope estimator) trend analysis methods to explore monthly, seasonal, and annual variations of precipitation for 122 years.Their results indicated an increasing trend in southwest monsoon season and annual precipitation based on the graphical trend analysis method, which was identified as the most robust model in their study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助我的小宝贝采纳,获得10
1秒前
1秒前
1秒前
盛夏发布了新的文献求助10
1秒前
qwq完成签到,获得积分10
2秒前
han发布了新的文献求助10
2秒前
个性元枫应助liu采纳,获得10
2秒前
皮半鬼完成签到,获得积分10
2秒前
李薇完成签到,获得积分10
3秒前
没所谓完成签到,获得积分10
3秒前
liyuxuan完成签到,获得积分10
4秒前
必中发布了新的文献求助20
4秒前
小公牛发布了新的文献求助10
5秒前
巴卡巴卡完成签到,获得积分10
5秒前
5秒前
xpf发布了新的文献求助10
5秒前
陈晨完成签到,获得积分20
5秒前
lessormoto完成签到,获得积分20
6秒前
左丘世立发布了新的文献求助10
6秒前
axiba完成签到,获得积分10
6秒前
jor666完成签到,获得积分10
7秒前
bkagyin应助ling采纳,获得10
7秒前
Gilmore发布了新的文献求助10
8秒前
宋宋发布了新的文献求助10
8秒前
8秒前
勤奋的安梦完成签到,获得积分10
9秒前
9秒前
盛夏完成签到,获得积分10
9秒前
sb完成签到,获得积分10
10秒前
10秒前
10秒前
阿萨德发布了新的文献求助10
10秒前
花花完成签到,获得积分10
10秒前
ldgsd完成签到,获得积分10
11秒前
时光倒流的鱼完成签到,获得积分10
11秒前
11秒前
11秒前
conghuiqu完成签到,获得积分10
11秒前
野人完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009462
求助须知:如何正确求助?哪些是违规求助? 3549388
关于积分的说明 11301996
捐赠科研通 3283894
什么是DOI,文献DOI怎么找? 1810448
邀请新用户注册赠送积分活动 886287
科研通“疑难数据库(出版商)”最低求助积分说明 811316