Editorial: Assessment of Climate Change Impact on Water Resources Using Machine Learning Algorithms

气候变化 计算机科学 水资源 算法 机器学习 人工智能 环境科学 环境资源管理 海洋学 地质学 生态学 生物
作者
Majid Niazkar,Mohammad Zakwan,Mohammad Reza Goodarzi,Mohammad Azamathulla Hazi
出处
期刊:Journal of Water and Climate Change [IWA Publishing]
卷期号:15 (6): iii-vi 被引量:2
标识
DOI:10.2166/wcc.2024.002
摘要

Machine learning (ML) algorithms bring about a game changer tool in developing estimation models in various fields of research, including water resources and climate change.These techniques can be used for solving various problems when assessing climate change impacts on water resources.For instance, they can be utilized to downscale outputs of Global Climate Models (GCMs) to investigate climate change effects on hydroclimatic variables.Furthermore, ML can be employed to study variations of water quantity and quality under a changing climate.Moreover, they can be exploited to explore climate change impacts on rivers, groundwater, and water supply systems.Because of the importance of the topic, this special issue intends to provide an opportunity to collect recent investigations focusing on evaluating climate change impacts on water resources.The scientific peer-reviewed papers contributed to this special issue are summarized in the following:• Statistical computation for hydrological assessment of climate change Understanding how hydroclimatic variables change over time considering climate change impacts is crucial.Nguyen et al.(2023) evaluated two ML models, i.e., convolutional neural network (CNN) and long short-term memories (LSTM), for estimating hydroclimatic variables at the 3S River Basin.For assessing climate change impacts, three climate models, i.e., CMCC-CMS, HadGEM-AO2, and MIROC5, and two climate scenarios, i.e., Representative Concentration Pathways (RCPs) 4.5 and 8.5, were considered for three future periods.An increase in the mean annual temperature and fluctuations in the annual precipitation were detected.Furthermore, ML-based future projections yield a rise in the streamflow in the Srepok and Sesan Rivers, a reducing trend of streamflow in the Sekong, and increasing flood risk in the Sekong and Sesan basins.Patel & Mehta (2023) conducted a statistical analysis of climate change over the Hanumangarh district.They exploited (i) graphical (Innovative Trend Analysis method) and (ii) statistical (Mann-Kendall's test and Sen's Slope estimator) trend analysis methods to explore monthly, seasonal, and annual variations of precipitation for 122 years.Their results indicated an increasing trend in southwest monsoon season and annual precipitation based on the graphical trend analysis method, which was identified as the most robust model in their study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Flyingant08发布了新的文献求助30
1秒前
1秒前
科研通AI2S应助iceeer采纳,获得10
2秒前
3秒前
3秒前
新用户完成签到,获得积分10
4秒前
知墨完成签到,获得积分10
4秒前
朴实山兰完成签到,获得积分20
4秒前
差不多得了完成签到,获得积分10
4秒前
4秒前
陆壹发布了新的文献求助10
4秒前
4秒前
Denvir完成签到 ,获得积分10
5秒前
lpc完成签到 ,获得积分10
5秒前
6秒前
骆驼林子完成签到,获得积分10
6秒前
遮宁完成签到,获得积分10
6秒前
6秒前
6秒前
长期不想取网名完成签到,获得积分10
6秒前
jyu发布了新的文献求助10
7秒前
7秒前
野性的柠檬应助博修采纳,获得10
7秒前
Beyond完成签到,获得积分10
7秒前
8秒前
芬栀发布了新的文献求助10
8秒前
9秒前
wwc应助大力的无声采纳,获得10
9秒前
温婉的慕凝完成签到,获得积分10
9秒前
bias完成签到,获得积分10
9秒前
wyx发布了新的文献求助10
9秒前
简单千秋发布了新的文献求助10
10秒前
10秒前
10秒前
哈哈哈哈完成签到 ,获得积分10
10秒前
宋枝野发布了新的文献求助10
11秒前
12秒前
Berrymeng发布了新的文献求助10
12秒前
juan发布了新的文献求助10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313258
求助须知:如何正确求助?哪些是违规求助? 2945620
关于积分的说明 8526418
捐赠科研通 2621404
什么是DOI,文献DOI怎么找? 1433530
科研通“疑难数据库(出版商)”最低求助积分说明 665037
邀请新用户注册赠送积分活动 650548