重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Big data, green loans and energy efficiency

地质学
作者
Jian Wang,Huai Deng,Xin Zhao
出处
期刊:Gondwana Research [Elsevier]
卷期号:133: 323-334 被引量:1
标识
DOI:10.1016/j.gr.2024.05.008
摘要

Green digital finance is an instrumental way to promote technological innovation, accelerate the low-carbon transition, and foster sustainable development. With the emergence of green digital finance, how does it affect firms' energy use efficiency? Using big data and green loans as an entry point, the impact of green digital finance on corporate energy efficiency and the role of big data are examined. We provided a simple theoretical model to analyze the green loaning behavior of the banking sector after applying big data and its impact on corporate energy efficiency. Our research finds that: (1) The application of big data can make it easier for the banking sector to obtain loan companies' information and reduce loan delinquency rates. This will reduce the information and transaction costs of the banking sector and expand the scale of optimal green loans. (2) The optimal green loan scale has a negative relationship with the optimal green loan interest rate. (3) The application of green loans by firms can improve energy efficiency and have a range of impacts on firms' decision-making, including an increase in the emission reduction ratio, innovation probability, and output and profit, followed by a decrease in energy consumption and pollution emissions. This paper further clarifies the channels through which green digital finance affects energy efficiency and specifies the role of big data in green digital finance. This could help relevant policymakers design more effective green digital finance policies, contributing to carbon peaking and carbon neutrality goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CCCr发布了新的文献求助10
1秒前
科研通AI2S应助xuewei采纳,获得10
1秒前
饭饭大王完成签到,获得积分10
1秒前
大芳儿发布了新的文献求助10
2秒前
务实玫瑰发布了新的文献求助10
2秒前
2秒前
juju发布了新的文献求助10
2秒前
ll发布了新的文献求助10
2秒前
Loki发布了新的文献求助10
2秒前
余生发布了新的文献求助10
2秒前
2秒前
3秒前
可爱的函函应助刘老板采纳,获得10
4秒前
NexusExplorer应助青年才俊采纳,获得10
4秒前
4秒前
CodeCraft应助jz采纳,获得10
4秒前
正直依风完成签到,获得积分10
4秒前
科研通AI6应助yunsww采纳,获得10
4秒前
Purplesky完成签到,获得积分10
5秒前
梓安发布了新的文献求助10
6秒前
6秒前
菲菲公主完成签到 ,获得积分10
7秒前
研友_ZlxK6Z发布了新的文献求助10
7秒前
务实三颜发布了新的文献求助10
7秒前
7秒前
Aimee发布了新的文献求助10
8秒前
8秒前
8秒前
CCCr完成签到,获得积分10
8秒前
科研通AI6应助dfsdf采纳,获得10
8秒前
8秒前
大芳儿完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
佳思思完成签到,获得积分10
9秒前
罗沫沫完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567