Big data, green loans and energy efficiency

地质学
作者
Jian Wang,Huai Deng,Xin Zhao
出处
期刊:Gondwana Research [Elsevier]
卷期号:133: 323-334 被引量:1
标识
DOI:10.1016/j.gr.2024.05.008
摘要

Green digital finance is an instrumental way to promote technological innovation, accelerate the low-carbon transition, and foster sustainable development. With the emergence of green digital finance, how does it affect firms' energy use efficiency? Using big data and green loans as an entry point, the impact of green digital finance on corporate energy efficiency and the role of big data are examined. We provided a simple theoretical model to analyze the green loaning behavior of the banking sector after applying big data and its impact on corporate energy efficiency. Our research finds that: (1) The application of big data can make it easier for the banking sector to obtain loan companies' information and reduce loan delinquency rates. This will reduce the information and transaction costs of the banking sector and expand the scale of optimal green loans. (2) The optimal green loan scale has a negative relationship with the optimal green loan interest rate. (3) The application of green loans by firms can improve energy efficiency and have a range of impacts on firms' decision-making, including an increase in the emission reduction ratio, innovation probability, and output and profit, followed by a decrease in energy consumption and pollution emissions. This paper further clarifies the channels through which green digital finance affects energy efficiency and specifies the role of big data in green digital finance. This could help relevant policymakers design more effective green digital finance policies, contributing to carbon peaking and carbon neutrality goals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
Queen88完成签到,获得积分10
刚刚
刘君卓发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
Jenny发布了新的文献求助10
2秒前
无极微光应助ZZZ采纳,获得20
3秒前
3秒前
4秒前
毛毛完成签到,获得积分10
4秒前
4秒前
4秒前
MMMV完成签到,获得积分10
4秒前
霜降应助琳666采纳,获得10
4秒前
Aurora发布了新的文献求助10
5秒前
欧阳完成签到,获得积分10
5秒前
小陈发布了新的文献求助10
5秒前
5秒前
可爱的函函应助笨笨乘风采纳,获得10
6秒前
ROOT发布了新的文献求助10
6秒前
6秒前
情怀应助小寒同学采纳,获得10
7秒前
7秒前
威武青亦发布了新的文献求助10
7秒前
7秒前
机智的仇天完成签到,获得积分10
8秒前
9秒前
wuyu完成签到,获得积分20
9秒前
牛马学生发布了新的文献求助10
9秒前
10秒前
草拟大坝发布了新的文献求助10
10秒前
H8发布了新的文献求助10
10秒前
11秒前
YORS完成签到,获得积分10
11秒前
科研通AI6应助chhe采纳,获得10
12秒前
蓝天发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548