Big data, green loans and energy efficiency

地质学
作者
Jian Wang,Huai Deng,Xin Zhao
出处
期刊:Gondwana Research [Elsevier BV]
卷期号:133: 323-334 被引量:1
标识
DOI:10.1016/j.gr.2024.05.008
摘要

Green digital finance is an instrumental way to promote technological innovation, accelerate the low-carbon transition, and foster sustainable development. With the emergence of green digital finance, how does it affect firms' energy use efficiency? Using big data and green loans as an entry point, the impact of green digital finance on corporate energy efficiency and the role of big data are examined. We provided a simple theoretical model to analyze the green loaning behavior of the banking sector after applying big data and its impact on corporate energy efficiency. Our research finds that: (1) The application of big data can make it easier for the banking sector to obtain loan companies' information and reduce loan delinquency rates. This will reduce the information and transaction costs of the banking sector and expand the scale of optimal green loans. (2) The optimal green loan scale has a negative relationship with the optimal green loan interest rate. (3) The application of green loans by firms can improve energy efficiency and have a range of impacts on firms' decision-making, including an increase in the emission reduction ratio, innovation probability, and output and profit, followed by a decrease in energy consumption and pollution emissions. This paper further clarifies the channels through which green digital finance affects energy efficiency and specifies the role of big data in green digital finance. This could help relevant policymakers design more effective green digital finance policies, contributing to carbon peaking and carbon neutrality goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
没有名字完成签到 ,获得积分10
5秒前
青黛完成签到 ,获得积分10
5秒前
Dank1ng完成签到,获得积分10
6秒前
杰2580完成签到,获得积分10
7秒前
大宝剑2号完成签到 ,获得积分10
8秒前
能干妙竹完成签到,获得积分10
9秒前
小珂完成签到,获得积分10
12秒前
皮皮虾完成签到 ,获得积分10
14秒前
15秒前
不能吃太饱完成签到 ,获得积分10
17秒前
buqi发布了新的文献求助10
18秒前
伶俐紫完成签到,获得积分10
19秒前
19秒前
20秒前
Annie发布了新的文献求助20
20秒前
二队淼队长完成签到,获得积分10
21秒前
我是老大应助清沧炽魂采纳,获得10
21秒前
彳亍宣完成签到 ,获得积分10
22秒前
缥缈的闭月完成签到,获得积分10
25秒前
buqi完成签到,获得积分10
25秒前
孔wj完成签到,获得积分10
26秒前
縤雨完成签到 ,获得积分10
26秒前
26秒前
Tao完成签到,获得积分10
31秒前
31秒前
黄景滨完成签到 ,获得积分10
32秒前
33秒前
wwrjj完成签到,获得积分10
34秒前
liu完成签到,获得积分10
34秒前
孤独听雨的猫完成签到 ,获得积分10
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
不倦应助科研通管家采纳,获得10
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
36秒前
macarthur发布了新的文献求助10
36秒前
36秒前
HaojunWang完成签到 ,获得积分10
37秒前
脑洞疼应助wwrjj采纳,获得10
40秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212499
求助须知:如何正确求助?哪些是违规求助? 4388659
关于积分的说明 13664251
捐赠科研通 4249165
什么是DOI,文献DOI怎么找? 2331448
邀请新用户注册赠送积分活动 1329148
关于科研通互助平台的介绍 1282561