Research on internal leakage detection of the ball valves based on stacking ensemble learning

堆积 泄漏(经济) 球(数学) 集成学习 计算机科学 人工智能 材料科学 物理 数学 几何学 核磁共振 经济 宏观经济学
作者
Mingjiang Shi,Liyuan Deng,Bohan Yang,Liansheng Qin,Li Gu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 095109-095109
标识
DOI:10.1088/1361-6501/ad56b0
摘要

Abstract Natural gas is an important clean energy source that is mainly transported through pipelines. The ball valve is a crucial piece of control equipment for the pipeline transportation system for natural gas, and the failure of internal leakage of the ball valve will seriously affect the natural gas transmission and increase the risk of sudden safety accidents. In response to the problems of the limitations of a single machine learning model in the traditional ball valve internal leakage rate prediction methods and failure to qualitatively analyze unilateral and bilateral internal leakage recognition of ball valve, a study of ball valve internal leakage detection based on Stacking ensemble learning is proposed. A total of 15 time and frequency domain feature parameters were obtained by feature extraction of 125 and 96 sets of raw acoustic emission signals from the ball valve; the parameters of a single machine learning model were adjusted by Bayesian optimization grid search. An internal leakage rate prediction model and an internal leakage recognition model are constructed, and the proposed model is compared and analyzed with a single model through a field ball valve internal leakage test. The results indicate that the Stacking ensemble learning model outperforms each single machine learning model in terms of SMAPE (17.2583), RMSE (1.1009), and MAE (0.9375) for internal leakage rate prediction. The Stacking ensemble learning model outperformed the single machine learning model in terms of accuracy (1.0000), recall (1.0000), precision (1.0000), FAR(0), and F1-score (1.0000) for internal leakage recognition. Stacking ensemble learning significantly enhances the model’s ability to detect internal ball valve leaks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucky完成签到,获得积分10
1秒前
思源应助Eclipseee采纳,获得10
3秒前
李同学完成签到,获得积分10
3秒前
holly完成签到,获得积分10
4秒前
研友_kng1r8完成签到,获得积分10
6秒前
7秒前
7秒前
天天快乐应助楼下小黑采纳,获得10
7秒前
Hlinc完成签到,获得积分10
8秒前
英姑应助伯赏满天采纳,获得10
9秒前
李安全完成签到,获得积分10
10秒前
WEDNES应助clueless采纳,获得10
11秒前
asd关闭了asd文献求助
11秒前
zj发布了新的文献求助10
12秒前
lxs完成签到,获得积分20
13秒前
康康0919ing完成签到,获得积分10
14秒前
14秒前
情怀应助胖胖采纳,获得10
14秒前
wking应助柠小檬c采纳,获得10
16秒前
livresse发布了新的文献求助10
16秒前
18秒前
黑色毛衣完成签到,获得积分10
18秒前
19秒前
sandy完成签到,获得积分10
19秒前
hhhh发布了新的文献求助10
19秒前
Lucas应助甜甜采纳,获得10
20秒前
qs完成签到,获得积分10
20秒前
21秒前
21秒前
穆紫应助faye采纳,获得10
21秒前
曾梦发布了新的文献求助10
21秒前
22秒前
22秒前
24秒前
若溪发布了新的文献求助10
24秒前
黄新绒发布了新的文献求助10
25秒前
Eclipseee发布了新的文献求助10
26秒前
甜甜完成签到,获得积分20
26秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3127454
求助须知:如何正确求助?哪些是违规求助? 2778263
关于积分的说明 7738628
捐赠科研通 2433618
什么是DOI,文献DOI怎么找? 1292974
科研通“疑难数据库(出版商)”最低求助积分说明 623091
版权声明 600489