Regulation of Dipolar‐Dipolar and Ion‐Dipolar Interactions Simultaneously in Strong Solvating Electrolytes for All‐Temperature Zinc‐Ion Batteries

偶极子 材料科学 溶剂化 离子 法拉第效率 电解质 化学物理 阳极 水溶液 氢键 腐蚀 电化学 化学工程 无机化学 分子 物理化学 电极 有机化学 化学 冶金 工程类
作者
Xiaoru Yun,Yufang Chen,Hongjing Gao,Di Lu,Lanlan Zuo,Peng Gao,Guangmin Zhou,Chunman Zheng,Peitao Xiao
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:14 (25) 被引量:18
标识
DOI:10.1002/aenm.202304341
摘要

Abstract Aqueous zinc‐ion batteries (AZIBs) attract attention due to their safety and high specific capacity. However, their practical applications are constrained by Zn anode corrosion, dendritic growth, and poor temperature adaptability induced by a strong hydrogen‐bond network in aqueous electrolytes. Herein, a universal strategy to design strong solvating electrolytes is proposed, in which the hydrogen‐bond network and solvation structures are reconstructed by regulating the dipolar‐dipolar and ion‐dipolar interactions simultaneously. Consequently, the hydrogen‐bond network in free water is largely weakened, and the water content in the Zn 2+ solvated sheath is reduced, while the hydrogen‐bond network between solvents is strengthened, which effectively broadens the operating temperature range and suppresses Zn dendrites and corrosion. As a result, Zn anodes exhibit excellent platting/stripping efficiency with an average Coulombic Efficiency up to 99.89% after 2000 cycles at 0.5 mA cm −2 , impressive cycling stability (5000 h, 0.5 mA cm −2 /0.5 mA h cm −2 ), and a wide operating temperature range of 140 °C (−50–90 °C). Moreover, the Zn//V 2 O 3 full cells also display enhanced temperature‐resistance, implying that the designed strong solvation electrolyte has practical application potential in extreme environments. This study suggests a promising strategy to design ideal electrolytes for high‐performance AZIBs with safety, ultralong cycling life, and satisfying temperature‐resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leung完成签到,获得积分10
1秒前
研友_LJGXgn完成签到,获得积分10
1秒前
泡泡球完成签到,获得积分10
2秒前
张益达完成签到,获得积分10
2秒前
rinki01发布了新的文献求助10
2秒前
CHEN.CHENG完成签到,获得积分10
3秒前
pcr163应助栀初采纳,获得80
3秒前
Jasper应助南至采纳,获得10
3秒前
优秀的乐曲完成签到,获得积分10
3秒前
小余发布了新的文献求助10
4秒前
Jasper应助kang采纳,获得10
5秒前
山260完成签到 ,获得积分10
5秒前
5秒前
打打应助冷傲的水儿采纳,获得10
6秒前
旺旺小仙贝完成签到,获得积分20
6秒前
量子星尘发布了新的文献求助10
7秒前
芒果好高完成签到,获得积分10
7秒前
8秒前
大个应助Goodenough采纳,获得10
8秒前
wanci应助时安采纳,获得10
9秒前
包钰韬发布了新的文献求助20
9秒前
无略完成签到,获得积分10
9秒前
阿牛完成签到,获得积分10
10秒前
wdy111举报小海狸求助涉嫌违规
11秒前
Star1983发布了新的文献求助10
12秒前
12秒前
大模型应助哇哦采纳,获得10
13秒前
郝好月完成签到,获得积分10
13秒前
mc1220完成签到,获得积分10
13秒前
神勇的晟睿完成签到 ,获得积分10
13秒前
奥特超曼应助LuLan0401采纳,获得10
15秒前
quan发布了新的文献求助10
15秒前
jailbreaker完成签到 ,获得积分0
15秒前
15秒前
彭于彦祖应助田果采纳,获得50
16秒前
马不停蹄完成签到,获得积分10
16秒前
共享精神应助精明一寡采纳,获得10
17秒前
第一步完成签到 ,获得积分10
17秒前
Lin关闭了Lin文献求助
18秒前
赘婿应助封妖妖采纳,获得10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582