萘
分子内力
光化学
激发态
质子
化学
过程(计算)
国家(计算机科学)
立体化学
计算机科学
有机化学
原子物理学
物理
核物理学
操作系统
算法
作者
Jiahui Wu,Xinyu Zhang,Jinglin Xia,Zihao Zhou,Shu‐Hua Xia
标识
DOI:10.1021/acs.jpca.4c00532
摘要
The 2-(2-aminophenyl)naphthalene molecule attracted much attention due to excited-state intramolecular proton transfer (ESIPT) from an amino NH2 group to a carbon atom of an adjacent aromatic ring. The ESIPT mechanisms of 2-(2-aminophenyl)naphthalene are still unclear. Herein, the decay pathways of this molecule in vacuum were investigated by combining static electronic structure calculations and nonadiabatic dynamics simulations. The calculations indicated the existence of two stable structures (S0–1 and S0–2) in the S0 and S1 states. For the S0–1 isomer, upon excitation to the Franck–Condon point, the system relaxed to the S1 minimum quickly, and then there exist four decay pathways (two ESIPT ones and two decay channels with C atom pyramidalization). In the ESIPT decay pathways, the system encounters the S1S0-PT-1 or S1S0-PT-2 conical intersection, which funnels the system rapidly to the S0 state. In the other two pathways, the system de-excited from the S1 to the S0 state via the S1S0–1 or S1S0–2 conical intersection. For the S0–2 structure, the decay pathways were similar to those of S0–1. The dynamics simulations showed that 75 and 69% of trajectories experienced the two ESIPT conical intersections for the S0–1 and S0–2 structures, respectively. Our simulations showed that the lifetime of the S1 state of S0–1 (S0–2) is estimated to be 358 (400) fs. Notably, we not only found the detailed reaction mechanism of the system but also found that the different ground-state configurations of this system have little effect on the reaction mechanism in vacuum.
科研通智能强力驱动
Strongly Powered by AbleSci AI