Mechanistic Insights into the Excited-State Intramolecular Proton Transfer (ESIPT) Process of 2-(2-Aminophenyl)naphthalene

分子内力 光化学 激发态 质子 化学 过程(计算) 国家(计算机科学) 立体化学 计算机科学 有机化学 原子物理学 物理 核物理学 操作系统 算法
作者
Jiahui Wu,Xinyu Zhang,Jinglin Xia,Zihao Zhou,Shu‐Hua Xia
出处
期刊:Journal of Physical Chemistry A [American Chemical Society]
卷期号:128 (19): 3801-3811 被引量:2
标识
DOI:10.1021/acs.jpca.4c00532
摘要

The 2-(2-aminophenyl)naphthalene molecule attracted much attention due to excited-state intramolecular proton transfer (ESIPT) from an amino NH2 group to a carbon atom of an adjacent aromatic ring. The ESIPT mechanisms of 2-(2-aminophenyl)naphthalene are still unclear. Herein, the decay pathways of this molecule in vacuum were investigated by combining static electronic structure calculations and nonadiabatic dynamics simulations. The calculations indicated the existence of two stable structures (S0–1 and S0–2) in the S0 and S1 states. For the S0–1 isomer, upon excitation to the Franck–Condon point, the system relaxed to the S1 minimum quickly, and then there exist four decay pathways (two ESIPT ones and two decay channels with C atom pyramidalization). In the ESIPT decay pathways, the system encounters the S1S0-PT-1 or S1S0-PT-2 conical intersection, which funnels the system rapidly to the S0 state. In the other two pathways, the system de-excited from the S1 to the S0 state via the S1S0–1 or S1S0–2 conical intersection. For the S0–2 structure, the decay pathways were similar to those of S0–1. The dynamics simulations showed that 75 and 69% of trajectories experienced the two ESIPT conical intersections for the S0–1 and S0–2 structures, respectively. Our simulations showed that the lifetime of the S1 state of S0–1 (S0–2) is estimated to be 358 (400) fs. Notably, we not only found the detailed reaction mechanism of the system but also found that the different ground-state configurations of this system have little effect on the reaction mechanism in vacuum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉唐精彩完成签到,获得积分10
刚刚
刚刚
1秒前
田茂青完成签到,获得积分10
1秒前
damian发布了新的文献求助30
1秒前
1秒前
聪明芒果完成签到,获得积分10
1秒前
Vvvvvvv应助虫二先生采纳,获得10
1秒前
西大研究生完成签到 ,获得积分10
1秒前
2秒前
2秒前
呆呆完成签到,获得积分10
2秒前
左一酱完成签到 ,获得积分10
3秒前
平淡南霜发布了新的文献求助10
3秒前
Sweet关注了科研通微信公众号
3秒前
3秒前
赘婿应助wangfu采纳,获得10
4秒前
4秒前
4秒前
pipge完成签到,获得积分20
4秒前
5秒前
澳澳发布了新的文献求助10
5秒前
6秒前
清脆的映天完成签到,获得积分10
6秒前
yl驳回了sweetbearm应助
6秒前
隐形曼青应助2鱼采纳,获得10
6秒前
通~发布了新的文献求助10
6秒前
香蕉觅云应助junzilan采纳,获得10
7秒前
张老涵发布了新的文献求助10
7秒前
灌饼发布了新的文献求助30
7秒前
罗实发布了新的文献求助10
7秒前
张张发布了新的文献求助10
8秒前
木香发布了新的文献求助10
8秒前
朴实以松发布了新的文献求助10
8秒前
在水一方应助神帅酷哥采纳,获得10
8秒前
9秒前
9秒前
pipge发布了新的文献求助30
9秒前
9秒前
万能图书馆应助卡卡采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794