Social network group decision-making model considering interactions between trust relationships and opinion evolution

群体决策 群(周期表) 控制论 计算机科学 决策模型 管理科学 人工智能 知识管理 运筹学 数理经济学 理论计算机科学 社会心理学 心理学 数学 经济 有机化学 化学
作者
J. Ma,Tong Wu
出处
期刊:Kybernetes [Emerald (MCB UP)]
卷期号:54 (9): 5060-5079
标识
DOI:10.1108/k-05-2023-0930
摘要

Purpose Social network group decision-making (SNGDM) has rapidly developed because of the impact of social relationships on decision-making behavior. However, not only do social relationships affect decision-making behavior, but decision-making behavior also affects social relationships. Such complicated interactions are rarely considered in current research. To bridge this gap, this study proposes an SNGDM model that considers the interaction between social trust relationships and opinion evolution. Design/methodology/approach First, the trust propagation and aggregation operators are improved to obtain a complete social trust relationship among decision-makers (DMs). Second, the evolution of preference information under the influence of trust relationships is measured, and the development of trust relationships during consensus interactions is predicted. Finally, the iteration of consensus interactions is simulated using an opinion dynamics model. A case study is used to verify the feasibility of the proposed model. Findings The proposed model can predict consensus achievement based on a group’s initial trust relationship and preference information and effectively captures the dynamic characteristics of opinion evolution in social networks. Originality/value This study proposes an SNGDM model that considers the interaction of trust and opinion. The proposed model improves trust propagation and aggregation operators, determines improved preference information based on the existing trust relationships and predicts the evolution of trust relationships in the consensus process. The dynamic interaction between the two accelerates DMs to reach a consensus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiu发布了新的文献求助10
1秒前
彭于晏应助illi采纳,获得10
1秒前
KevinCc完成签到,获得积分10
1秒前
大方的飞风完成签到 ,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
lx发布了新的文献求助20
2秒前
2秒前
3秒前
靓丽访枫发布了新的文献求助10
3秒前
3秒前
幸运兔发布了新的文献求助10
4秒前
4秒前
许钟一发布了新的文献求助10
4秒前
5秒前
5秒前
英俊的铭应助18183389686采纳,获得10
5秒前
5秒前
科目三应助王超采纳,获得10
6秒前
Owen应助xxx采纳,获得10
6秒前
xiaoyeken发布了新的文献求助10
6秒前
aerfas发布了新的文献求助10
6秒前
归去来兮发布了新的文献求助10
7秒前
米玄发布了新的文献求助10
8秒前
8秒前
王小拉完成签到,获得积分10
8秒前
852应助old杜采纳,获得10
8秒前
华仔应助幸运兔采纳,获得10
9秒前
凌晨洋发布了新的文献求助10
9秒前
9秒前
翻斗鱼发布了新的文献求助10
10秒前
FashionBoy应助路宝采纳,获得10
10秒前
YANBINGHANG完成签到,获得积分10
11秒前
11秒前
曼凡发布了新的文献求助10
11秒前
11秒前
12秒前
天天快乐应助xiaoyeken采纳,获得10
13秒前
王小拉发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663531
求助须知:如何正确求助?哪些是违规求助? 4850935
关于积分的说明 15104899
捐赠科研通 4821760
什么是DOI,文献DOI怎么找? 2580993
邀请新用户注册赠送积分活动 1535205
关于科研通互助平台的介绍 1493552