Social network group decision-making model considering interactions between trust relationships and opinion evolution

群体决策 群(周期表) 控制论 计算机科学 决策模型 管理科学 人工智能 知识管理 运筹学 数理经济学 理论计算机科学 社会心理学 心理学 数学 经济 有机化学 化学
作者
J. Ma,Tong Wu
出处
期刊:Kybernetes [Emerald (MCB UP)]
卷期号:54 (9): 5060-5079
标识
DOI:10.1108/k-05-2023-0930
摘要

Purpose Social network group decision-making (SNGDM) has rapidly developed because of the impact of social relationships on decision-making behavior. However, not only do social relationships affect decision-making behavior, but decision-making behavior also affects social relationships. Such complicated interactions are rarely considered in current research. To bridge this gap, this study proposes an SNGDM model that considers the interaction between social trust relationships and opinion evolution. Design/methodology/approach First, the trust propagation and aggregation operators are improved to obtain a complete social trust relationship among decision-makers (DMs). Second, the evolution of preference information under the influence of trust relationships is measured, and the development of trust relationships during consensus interactions is predicted. Finally, the iteration of consensus interactions is simulated using an opinion dynamics model. A case study is used to verify the feasibility of the proposed model. Findings The proposed model can predict consensus achievement based on a group’s initial trust relationship and preference information and effectively captures the dynamic characteristics of opinion evolution in social networks. Originality/value This study proposes an SNGDM model that considers the interaction of trust and opinion. The proposed model improves trust propagation and aggregation operators, determines improved preference information based on the existing trust relationships and predicts the evolution of trust relationships in the consensus process. The dynamic interaction between the two accelerates DMs to reach a consensus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HY发布了新的文献求助10
刚刚
1秒前
模糊老师完成签到,获得积分10
2秒前
2秒前
碧霄完成签到,获得积分10
3秒前
沉默的瑞宝完成签到 ,获得积分10
3秒前
Adam_Lan完成签到,获得积分10
3秒前
顾矜应助明理的帆布鞋采纳,获得10
4秒前
4秒前
乐乐应助乙未采纳,获得10
5秒前
Hello应助儒雅致远采纳,获得10
6秒前
lalalal发布了新的文献求助10
6秒前
7秒前
轨迹应助嘿嘿采纳,获得10
7秒前
Decline发布了新的文献求助10
7秒前
大胆的映萱关注了科研通微信公众号
7秒前
GYR完成签到,获得积分10
8秒前
刘小蕊完成签到,获得积分10
8秒前
花木兰发布了新的文献求助10
8秒前
yuaner发布了新的文献求助10
8秒前
HY完成签到,获得积分10
8秒前
hxh完成签到,获得积分10
9秒前
9秒前
ccc发布了新的文献求助10
10秒前
10秒前
11秒前
xixi发布了新的文献求助10
11秒前
隐形曼青应助嘻嘻采纳,获得10
11秒前
汉堡包应助Adam_Lan采纳,获得10
12秒前
12秒前
12秒前
13秒前
13秒前
14秒前
丘比特应助gdh采纳,获得10
14秒前
15秒前
芦同学发布了新的文献求助10
15秒前
15秒前
zzz发布了新的文献求助10
15秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695061
求助须知:如何正确求助?哪些是违规求助? 5099914
关于积分的说明 15215127
捐赠科研通 4851509
什么是DOI,文献DOI怎么找? 2602393
邀请新用户注册赠送积分活动 1554207
关于科研通互助平台的介绍 1512167