Defect-rich CoFeCu alloy nanoflowers for efficient oxygen evolution reaction in alkaline media

合金 氧气 化学工程 化学 材料科学 冶金 工程类 有机化学
作者
Jiawen Wang,Zongli Gu,Yanbing Huang,Fuxi Bao,Yan Liu
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier]
卷期号:698: 134532-134532 被引量:1
标识
DOI:10.1016/j.colsurfa.2024.134532
摘要

Energy shortages and environmental problems caused by the intensive use of fossil fuels have led to an urgent search for alternative energy sources. The solar-powered hydrogen generation from water splitting is expected to replace the traditional fossil fuels extraction. However, the slow anodic oxygen evolution reaction (OER) of the water splitting limits the overall efficiency of hydrogen production. The introduction of foreign atoms into bimetallic alloys is an effective strategy for constructing rich defects, modulating the electronic structure and optimizing the electrocatalytic performance. In this study, CoFeCu alloy nanoflowers (CoFeCu/NF) are prepared as electrocatalysts for OER by introducing Cu into the CoFe alloy through a facile electrodeposition method. It is revealed that the introduction of Cu not only enhances the electronic interactions between the elements, i.e., Co, Fe, and Cu, but also induces the generation of a large number of Fe3+ cationic vacancies which facilitate the surface reconstruction of Fe into FeOOH species during OER. Benefiting from the synergistic effect of CoOOH and FeOOH generated by in-situ electrochemical reconstruction, CoFeCu/NF exhibits satisfactory OER catalytic performance in 1.0 M KOH (η10 mA cm−2 = 257 mV) and is able to maintain a good stability for 48 h at 50 mA cm−2. Our work demonstrates the roles of introducing Cu into transition metal-based alloys and provides an effective strategy for the rational design of OER electrocatalysts in alkaline media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
留胡子的霖完成签到,获得积分10
刚刚
阔达谷槐关注了科研通微信公众号
刚刚
隐形曼青应助默默紊采纳,获得10
刚刚
小鸭子应助花无缺采纳,获得10
3秒前
yaozi完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
善学以致用应助开心夏真采纳,获得10
5秒前
wangtingyu发布了新的文献求助10
7秒前
海的呼唤完成签到,获得积分10
7秒前
8秒前
文风杰采完成签到,获得积分10
8秒前
混学家完成签到 ,获得积分10
8秒前
EMM发布了新的文献求助10
8秒前
WEIFENG发布了新的文献求助10
9秒前
勤恳白云完成签到,获得积分10
9秒前
11秒前
11秒前
子车茗应助悦好采纳,获得30
11秒前
12秒前
混学家关注了科研通微信公众号
12秒前
黑猫警长发布了新的文献求助10
13秒前
FashionBoy应助大意的硬币采纳,获得10
13秒前
彭于晏应助小七2022采纳,获得10
13秒前
直率丹琴发布了新的文献求助10
14秒前
A6L完成签到,获得积分10
14秒前
一谩完成签到,获得积分20
15秒前
happy8le完成签到,获得积分10
15秒前
16秒前
zhang005on发布了新的文献求助10
16秒前
17秒前
石头完成签到,获得积分10
17秒前
happy8le发布了新的文献求助20
17秒前
19秒前
兜兜发布了新的文献求助10
19秒前
19秒前
沉舟完成签到,获得积分10
20秒前
Liza完成签到,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312665
求助须知:如何正确求助?哪些是违规求助? 2945170
关于积分的说明 8523372
捐赠科研通 2620973
什么是DOI,文献DOI怎么找? 1433198
科研通“疑难数据库(出版商)”最低求助积分说明 664918
邀请新用户注册赠送积分活动 650255