Prompts, Pearls, Imperfections: Comparing ChatGPT and a Human Researcher in Qualitative Data Analysis

定性研究 语篇分析 心理学 面子(社会学概念) 认识论 社会学 计算机科学 语言学 社会科学 哲学
作者
Jonas Wachinger,Kate Bärnighausen,Louis N. Schäfer,Kerry Scott,Shannon A. McMahon
出处
期刊:Qualitative Health Research [SAGE]
被引量:1
标识
DOI:10.1177/10497323241244669
摘要

The impact of ChatGPT and other large language model–based applications on scientific work is being debated across contexts and disciplines. However, despite ChatGPT’s inherent focus on language generation and processing, insights regarding its potential for supporting qualitative research and analysis remain limited. In this article, we advocate for an open discourse on chances and pitfalls of AI-supported qualitative analysis by exploring ChatGPT’s performance when analyzing an interview transcript based on various prompts and comparing results to those derived by an experienced human researcher. Themes identified by the human researcher and ChatGPT across analytic prompts overlapped to a considerable degree, with ChatGPT leaning toward descriptive themes but also identifying more nuanced dynamics (e.g., ‘trust and responsibility’ and ‘acceptance and resistance’). ChatGPT was able to propose a codebook and key quotes from the transcript which had considerable face validity but would require careful review. When prompted to embed findings into broader theoretical discourses, ChatGPT could convincingly argue how identified themes linked to the provided theories, even in cases of (seemingly) unfitting models. In general, despite challenges, ChatGPT performed better than we had expected, especially on identifying themes which generally overlapped with those of an experienced researcher, and when embedding these themes into specific theoretical debates. Based on our results, we discuss several ideas on how ChatGPT could contribute to but also challenge established best-practice approaches for rigorous and nuanced qualitative research and teaching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mp4发布了新的文献求助10
刚刚
刚刚
玛卡巴卡卡完成签到 ,获得积分10
刚刚
刚刚
bkagyin应助susan采纳,获得10
1秒前
Wind发布了新的文献求助10
1秒前
开放的白玉完成签到,获得积分10
1秒前
kekeke科发布了新的文献求助10
1秒前
脑洞疼应助有魅力的香芦采纳,获得10
2秒前
海上溜冰完成签到 ,获得积分10
2秒前
3秒前
文艺的白开水完成签到,获得积分10
3秒前
所所应助chlift采纳,获得10
3秒前
呜呼啦呼发布了新的文献求助10
3秒前
852应助王铭智采纳,获得10
4秒前
嘎嘎嘎发布了新的文献求助10
4秒前
王炸发布了新的文献求助30
4秒前
CC完成签到,获得积分10
5秒前
5秒前
5秒前
112244发布了新的文献求助10
5秒前
危机的酒窝完成签到,获得积分10
5秒前
王彤彤发布了新的文献求助10
5秒前
6秒前
找文献的天才狗完成签到,获得积分10
6秒前
6秒前
Yamin发布了新的文献求助10
7秒前
Richardisme完成签到,获得积分10
7秒前
YING完成签到 ,获得积分10
7秒前
sgyang发布了新的文献求助10
8秒前
残血书生发布了新的文献求助10
8秒前
9秒前
9秒前
迷路的天亦完成签到,获得积分10
9秒前
u深度发布了新的文献求助10
9秒前
Richardisme发布了新的文献求助10
10秒前
李健的小迷弟应助胜东采纳,获得10
10秒前
10秒前
李爱国应助Steven采纳,获得10
11秒前
明若清完成签到,获得积分10
11秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245091
求助须知:如何正确求助?哪些是违规求助? 2888863
关于积分的说明 8255782
捐赠科研通 2557216
什么是DOI,文献DOI怎么找? 1385884
科研通“疑难数据库(出版商)”最低求助积分说明 650265
邀请新用户注册赠送积分活动 626473