Efficient Multi-Scale Attention Module with Cross-Spatial Learning

计算机科学 频道(广播) 架空(工程) 人工智能 特征(语言学) 成对比较 编码(内存) 模式识别(心理学) 特征提取 特征学习 维数之咒 维数(图论) 比例(比率) 降维 代表(政治) 数学 物理 操作系统 哲学 量子力学 语言学 纯数学 计算机网络 政治 政治学 法学
作者
Daliang Ouyang,Su He,Guozhong Zhang,Mingzhu Luo,Huaiyong Guo,Jianming Zhan,Zhijie Huang
标识
DOI:10.1109/icassp49357.2023.10096516
摘要

Remarkable effectiveness of the channel or spatial attention mechanisms for producing more discernible feature representation are illustrated in various computer vision tasks. However, modeling the cross-channel relationships with channel dimensionality reduction may bring side effect in extracting deep visual representations. In this paper, a novel efficient multi-scale attention (EMA) module is proposed. Focusing on retaining the information on per channel and decreasing the computational overhead, we reshape the partly channels into the batch dimensions and group the channel dimensions into multiple sub-features which make the spatial semantic features well-distributed inside each feature group. Specifically, apart from encoding the global information to re-calibrate the channel-wise weight in each parallel branch, the output features of the two parallel branches are further aggregated by a cross-dimension interaction for capturing pixel-level pairwise relationship. We conduct extensive ablation studies and experiments on image classification and object detection tasks with popular benchmarks (e.g., CIFAR-100, ImageNet-1k, MS COCO and VisDrone2019) for evaluating its performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
由不尤完成签到 ,获得积分10
刚刚
谦让的焱发布了新的文献求助10
刚刚
CL完成签到,获得积分10
1秒前
筱er完成签到,获得积分10
1秒前
GDL发布了新的文献求助10
2秒前
Ammy发布了新的文献求助10
3秒前
李健应助upupup采纳,获得10
4秒前
10秒前
itsserene应助科研通管家采纳,获得20
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
不配.应助科研通管家采纳,获得20
10秒前
11秒前
11秒前
懦弱的乐蕊完成签到 ,获得积分10
11秒前
11秒前
小梦发布了新的文献求助10
13秒前
李加一完成签到,获得积分10
14秒前
mm发布了新的文献求助10
15秒前
16秒前
取什么好呢应助LIN采纳,获得10
17秒前
安详靖柏完成签到,获得积分10
18秒前
20秒前
ihc发布了新的文献求助10
21秒前
乐乐应助N7采纳,获得10
22秒前
不配.应助wonhui采纳,获得10
23秒前
张楠发布了新的文献求助20
23秒前
26秒前
30秒前
Huajing_Yang发布了新的文献求助10
33秒前
11发布了新的文献求助10
33秒前
葡萄成熟应助王算法采纳,获得10
34秒前
34秒前
35秒前
36秒前
lucas发布了新的文献求助10
38秒前
深情安青应助ihc采纳,获得10
39秒前
张楠完成签到,获得积分10
39秒前
41秒前
zhu发布了新的文献求助10
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789630
关于积分的说明 7791721
捐赠科研通 2445972
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079