厚壁菌
酸杆菌
生物地球化学循环
蛋白质细菌
河岸带
放线菌门
拟杆菌
生态学
环境化学
生物
根际
微生物种群生物学
植物
化学
细菌
栖息地
16S核糖体RNA
遗传学
作者
Yuexia Wu,Ligang Xu,Zhenglu Wang,Junxiang Cheng,Jilai Lu,Hailin You,Xiaodong Zhang
标识
DOI:10.1016/j.scitotenv.2022.158237
摘要
Although the significance of the coupled Fe- and N- cycling processes on biogeochemical transformation in riparian wetlands is well-known, the regulation associated with the changes on the microbiotas during different hydrological regimes remains unclear. This study performed field investigations on the bacterial community compositions (BCC) and specific genera associated to Fe- and N- cycling in the rhizosphere soil and sediments in a riparian wetland in Poyang lake, China. The predominant phyla Proteobacteria, Acidobacteria, and Nitrospirae from all the samples remarkably decreased after long-term continuous flooding, while Actinobacteria, Firmicutes and Bacteroidetes were enriched. For the family level, the relative abundances of iron-oxidizing bacteria (FeOB) Gallionellaceae, and N fixing bacteria Nitrospiraceae and Bradyrhizobiaceae significantly declined upon the long-term flooding and then increased with dewatering, which were consistent with the functional genes sequencing analysis. In which, the Bradyrhizobiaceae (RA 2.0 %-34.6 %) was the dominant nirS denitrifier and potential iron-reducing bacteria (FeRB), Sideroxydans lithotrophicus was one of the dominant FeOB (RA 1.7 %-23 %), which was also identified to be the nirS dentrifier (RA 0.2 %-4.3 %). The absolute quantification of the functional genes levels including nirS, nirK, FeRB (Geobacter spp.) showed their significant increases by 3-7 times upon desiccation compared to that under post-CF. The PCA and RDA results indicated the linkage between redox changes of N and Fe during inundation mediated by FeRB, NOB, and FeOB, which were closely related to hydrochemical indices NO3-, Fe2+ and SO42-. These evidences all implied the likely occurrence of nitrate reduction coupled to Fe(II) oxidation (NRFeOx) under oligotrophic conditions, which was potentially facilitated by metabolizers consisting of highly correlated Bradyrhizobiaceae and Sideroxydans (rho = 0.86, p < 0.01). These findings provide an interpretation of the biological reactions in the microbially mediated NRFeOx processes driven by hydrological change, which could assist the mechanistic understanding of the global biogeochemical cycles of iron and nitrogen in riparian wetlands.
科研通智能强力驱动
Strongly Powered by AbleSci AI