Electrolyte Engineering for High-Voltage Lithium Metal Batteries

电解质 阴极 阳极 电化学 材料科学 锂(药物) 快离子导体 电极 纳米技术 化学工程 化学 工程类 医学 内分泌学 物理化学
作者
Liwei Dong,Shijie Zhong,Botao Yuan,Yuanpeng Ji,Jipeng Liu,Yuanpeng Liu,Chunhui Yang,Jiecai Han,Weidong He
出处
期刊:Research [AAAS00]
卷期号:2022 被引量:39
标识
DOI:10.34133/2022/9837586
摘要

High-voltage lithium metal batteries (HVLMBs) have been arguably regarded as the most prospective solution to ultrahigh-density energy storage devices beyond the reach of current technologies. Electrolyte, the only component inside the HVLMBs in contact with both aggressive cathode and Li anode, is expected to maintain stable electrode/electrolyte interfaces (EEIs) and facilitate reversible Li + transference. Unfortunately, traditional electrolytes with narrow electrochemical windows fail to compromise the catalysis of high-voltage cathodes and infamous reactivity of the Li metal anode, which serves as a major contributor to detrimental electrochemical performance fading and thus impedes their practical applications. Developing stable electrolytes is vital for the further development of HVLMBs. However, optimization principles, design strategies, and future perspectives for the electrolytes of the HVLMBs have not been summarized in detail. This review first gives a systematical overview of recent progress in the improvement of traditional electrolytes and the design of novel electrolytes for the HVLMBs. Different strategies of conventional electrolyte modification, including high concentration electrolytes and CEI and SEI formation with additives, are covered. Novel electrolytes including fluorinated, ionic-liquid, sulfone, nitrile, and solid-state electrolytes are also outlined. In addition, theoretical studies and advanced characterization methods based on the electrolytes of the HVLMBs are probed to study the internal mechanism for ultrahigh stability at an extreme potential. It also foresees future research directions and perspectives for further development of electrolytes in the HVLMBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小菜鸟发布了新的文献求助10
1秒前
momo发布了新的文献求助10
3秒前
LYY完成签到,获得积分10
4秒前
xy820发布了新的文献求助10
4秒前
深情安青应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
Jay应助科研通管家采纳,获得10
5秒前
模糊中正应助科研通管家采纳,获得30
5秒前
假装超人会飞完成签到,获得积分10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
路之遥兮发布了新的文献求助10
12秒前
12秒前
墨水应助leichuang采纳,获得50
12秒前
13秒前
Hommand_藏山完成签到,获得积分10
13秒前
melo完成签到 ,获得积分10
15秒前
墨水应助oldblack采纳,获得20
18秒前
CipherSage应助大方的寻雪采纳,获得10
18秒前
笑点低的小天鹅完成签到 ,获得积分10
18秒前
Hello应助feifeifei采纳,获得30
19秒前
李健的粉丝团团长应助lhx采纳,获得10
19秒前
20秒前
外向的不尤完成签到,获得积分20
20秒前
小二郎应助路之遥兮采纳,获得10
22秒前
22秒前
25秒前
ANGEK完成签到,获得积分20
25秒前
泡泡发布了新的文献求助20
26秒前
kk完成签到,获得积分10
26秒前
kk完成签到,获得积分10
28秒前
彭院士完成签到,获得积分10
29秒前
璐璐发布了新的文献求助10
29秒前
情怀应助淡定的白柏采纳,获得10
30秒前
lhx发布了新的文献求助10
31秒前
36秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267593
求助须知:如何正确求助?哪些是违规求助? 2907038
关于积分的说明 8340448
捐赠科研通 2577657
什么是DOI,文献DOI怎么找? 1401216
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633967