DPAFNet: A Residual Dual-Path Attention-Fusion Convolutional Neural Network for Multimodal Brain Tumor Segmentation

计算机科学 掷骰子 分割 人工智能 模式识别(心理学) 残余物 卷积神经网络 背景(考古学) 卷积(计算机科学) 特征(语言学) 计算机视觉 人工神经网络 算法 生物 语言学 哲学 古生物学 数学 几何学
作者
Yankang Chang,Zhouzhou Zheng,Yingwei Sun,Mengmeng Zhao,Yao Lu,Yan Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104037-104037 被引量:50
标识
DOI:10.1016/j.bspc.2022.104037
摘要

Brain tumors are highly hazardous, and precise automated segmentation of brain tumor subregions has great importance and research significance on the diagnosis and treatment of diseases. Rapid advances in deep learning make accurate and efficient automatic segmentation more possible, but there are challenges. In this paper, an efficient 3D segmentation model (DPAFNet) based on dual-path (DP) module and multi-scale attention fusion (MAF) module is proposed. In DPAFNet, the dual path convolution is applied to broaden the network scale and residual connection is introduced to avoid network degradation. An attention fusion module is proposed to aggregate channel level global and local information, in which feature maps of different scales are fused to obtain features that are enriched in semantic information. This makes the object information of small tumors get full attention. Furthermore, the 3D iterative dilated convolution merging (IDCM) module expands the receptive field and improves the ability of context awareness. Ablation experiments verify the optimal combination of dilation rate for the dilated convolution merging module and demonstrate the enhancement of segmentation accuracy due to the post-processing method. Comparative experiments of this study on BraTS2018, BraTS2019 and BraTS2020 are promising and provide a promising precision and Dice score compared to related work. The proposed DPAFNet achieves Dice score of 79.5%, 90.0% and 83.9% in the enhancing tumor, whole tumor and tumor core on BraTS2018, respectively. On BraTS2019, it achieves Dice score of 78.2%, 89.0% and 81.2% in the enhancing tumor, whole tumor and tumor core, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着的墨镜完成签到,获得积分10
1秒前
顾矜应助FDSDK采纳,获得10
1秒前
2秒前
彭彭发布了新的文献求助10
3秒前
轻松友容完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
深情安青应助qliu采纳,获得10
5秒前
5秒前
慕青应助beyondjun采纳,获得10
6秒前
梦醒了完成签到 ,获得积分10
6秒前
杨小黑发布了新的文献求助10
7秒前
柯一一应助科研通管家采纳,获得10
8秒前
8秒前
英俊的铭应助科研通管家采纳,获得20
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
典雅听枫发布了新的文献求助10
9秒前
9秒前
默欢完成签到,获得积分10
10秒前
10秒前
求知的周完成签到,获得积分10
12秒前
cass发布了新的文献求助10
12秒前
乐乐应助乐观囧采纳,获得10
13秒前
14秒前
Ava应助油糕饵块采纳,获得10
15秒前
15秒前
李威龙发布了新的文献求助10
15秒前
Ekko完成签到,获得积分10
16秒前
Emy完成签到,获得积分10
16秒前
所所应助Ah采纳,获得10
16秒前
李爱国应助典雅听枫采纳,获得10
17秒前
内向寒云发布了新的文献求助10
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962328
求助须知:如何正确求助?哪些是违规求助? 3508472
关于积分的说明 11141017
捐赠科研通 3241123
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872827
科研通“疑难数据库(出版商)”最低求助积分说明 803382