DPAFNet: A Residual Dual-Path Attention-Fusion Convolutional Neural Network for Multimodal Brain Tumor Segmentation

计算机科学 掷骰子 分割 人工智能 模式识别(心理学) 残余物 卷积神经网络 背景(考古学) 卷积(计算机科学) 特征(语言学) 计算机视觉 人工神经网络 算法 生物 语言学 哲学 古生物学 数学 几何学
作者
Yankang Chang,Zhouzhou Zheng,Yingwei Sun,Mengmeng Zhao,Yao Lu,Yan Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104037-104037 被引量:50
标识
DOI:10.1016/j.bspc.2022.104037
摘要

Brain tumors are highly hazardous, and precise automated segmentation of brain tumor subregions has great importance and research significance on the diagnosis and treatment of diseases. Rapid advances in deep learning make accurate and efficient automatic segmentation more possible, but there are challenges. In this paper, an efficient 3D segmentation model (DPAFNet) based on dual-path (DP) module and multi-scale attention fusion (MAF) module is proposed. In DPAFNet, the dual path convolution is applied to broaden the network scale and residual connection is introduced to avoid network degradation. An attention fusion module is proposed to aggregate channel level global and local information, in which feature maps of different scales are fused to obtain features that are enriched in semantic information. This makes the object information of small tumors get full attention. Furthermore, the 3D iterative dilated convolution merging (IDCM) module expands the receptive field and improves the ability of context awareness. Ablation experiments verify the optimal combination of dilation rate for the dilated convolution merging module and demonstrate the enhancement of segmentation accuracy due to the post-processing method. Comparative experiments of this study on BraTS2018, BraTS2019 and BraTS2020 are promising and provide a promising precision and Dice score compared to related work. The proposed DPAFNet achieves Dice score of 79.5%, 90.0% and 83.9% in the enhancing tumor, whole tumor and tumor core on BraTS2018, respectively. On BraTS2019, it achieves Dice score of 78.2%, 89.0% and 81.2% in the enhancing tumor, whole tumor and tumor core, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eghiefefe完成签到,获得积分10
刚刚
领导范儿应助吴金灿采纳,获得10
1秒前
晴天发布了新的文献求助10
1秒前
于文志发布了新的文献求助10
1秒前
英姑应助lmx采纳,获得10
2秒前
大黄发布了新的文献求助30
2秒前
知性的成完成签到,获得积分10
2秒前
梦天完成签到,获得积分10
3秒前
3秒前
嘤嘤嘤发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
做好胶水发布了新的文献求助10
4秒前
小王小王发布了新的文献求助10
4秒前
Twonej应助轻松笙采纳,获得30
4秒前
香蕉觅云应助饱满访蕊采纳,获得10
4秒前
顾矜应助整齐碧玉采纳,获得10
5秒前
5秒前
Jared应助electromx采纳,获得20
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
所所应助zhangxq采纳,获得10
7秒前
7秒前
文静季节发布了新的文献求助10
7秒前
8秒前
8秒前
优雅愚志完成签到,获得积分10
8秒前
月圆夜应助舒适蜗牛采纳,获得50
9秒前
橙小胖发布了新的文献求助10
9秒前
敬之发布了新的文献求助10
9秒前
哈哈哈发布了新的文献求助10
9秒前
9秒前
10秒前
jin完成签到,获得积分10
10秒前
开心阑悦发布了新的文献求助10
11秒前
搜集达人应助LHW采纳,获得10
11秒前
dian完成签到,获得积分10
11秒前
传奇3应助快乐觅露采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851