吸附
伊利石
碳酸盐
化学
溶解有机碳
碳酸乙烯酯
有机质
粘土矿物
水溶液
无机化学
环境化学
矿物学
吸附
有机化学
电极
物理化学
电解质
作者
Delphine Durce,Sonia Salah,Liesbeth Van Laer,Lian Wang,N. Maes,Stéphane Brassinnes
出处
期刊:Minerals
[MDPI AG]
日期:2022-08-26
卷期号:12 (9): 1078-1078
被引量:3
摘要
126Sn is a long-lived fission product and it is important to assess its sorption onto the host rocks surrounding a possible nuclear waste repository. Boom Clay (BC) is under investigation in Belgium as a potential host rock. To better understand Sn(IV) sorption onto the clay minerals constituting BC, sorption of Sn(IV) was here investigated on Illite du Puy (IdP), from pH 3 to 12. Sorption isotherms at pH ~8.4 were acquired in the presence and absence of carbonate, and in the presence and absence of BC dissolved organic matter (DOM). Sn(IV) strongly sorbed on IdP over the full range of the pHs and concentrations investigated. In the presence of carbonates, Sn(IV) sorption was slightly decreased, highlighting the Sn(IV)–carbonate complexation. DOM reduced the Sn(IV) sorption, confirming the strong complexation of Sn(IV) with DOM. The results were modelled with the 2-site protolysis non-electrostatic surface complexation model. The surface complexation constants and aqueous complexation constants with carbonate and DOM were optimized to describe the experimental data. The applicability of the component additivity approach (CAA) was also tested to describe the experimental Sn(IV) sorption isotherm acquired on BC in BC pore water. The CAA did not allow accurate prediction of Sn(IV) sorption on BC, highlighting the high sensitivity of the model to the Sn(IV)-DOM complexation.
科研通智能强力驱动
Strongly Powered by AbleSci AI