已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combining Network-based and Matrix Factorization to Predict Novel Drug-target Interactions: A Case Study Using the Brazilian Natural Chemical Database

矩阵分解 计算机科学 化学信息学 水准点(测量) 药物发现 因式分解 数据挖掘 机器学习 人工智能 生物信息学 算法 生物 特征向量 物理 大地测量学 量子力学 地理
作者
Ronald Sodré Martins,Marcelo Ferreira da Costa Gomes,Ernesto R. Caffarena
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:17 (9): 793-803 被引量:3
标识
DOI:10.2174/1574893617666220820105258
摘要

Background: Chemogenomic techniques use mathematical calculations to predict new DrugTarget Interactions (DTIs) based on drugs' chemical and biological information and pharmacological targets. Compared to other structure-based computational methods, they are faster and less expensive. Network analysis and matrix factorization are two practical chemogenomic approaches for predicting DTIs from many drugs and targets. However, despite the extensive literature introducing various chemogenomic techniques and methodologies, there is no consensus for predicting interactions using a drug or a target, a set of drugs, and a dataset of known interactions Methods: This study predicted novel DTIs from a limited collection of drugs using a heterogeneous ensemble based on network and matrix factorization techniques. We examined three network-based approaches and two matrix factorization-based methods on benchmark datasets. Then, we used one network approach and one matrix factorization technique on a small collection of Brazilian plant-derived pharmaceuticals. Results: We have discovered two novel DTIs and compared them to the Therapeutic Target Database to detect linked disorders, such as breast cancer, prostate cancer, and Cushing syndrome, with two drugs (Quercetin and Luteolin) originating from Brazilian plants. Conclusion: The suggested approach allows assessing the performance of approaches only based on their sensitivity, independent of their unfavorable interactions. Findings imply that integrating network and matrix factorization results might be a helpful technique in bioinformatics investigations involving the development of novel medicines from a limited range of drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
paul发布了新的文献求助10
1秒前
852应助一粒豌豆糕采纳,获得50
2秒前
4秒前
充电宝应助骑驴找马采纳,获得10
5秒前
9秒前
paul完成签到,获得积分10
9秒前
唐唐发布了新的文献求助10
10秒前
Jin完成签到,获得积分10
12秒前
贺飞风发布了新的文献求助10
13秒前
14秒前
LL发布了新的文献求助10
15秒前
哈哈哈完成签到 ,获得积分10
15秒前
16秒前
Owen应助文天采纳,获得10
18秒前
海阔天空发布了新的文献求助10
21秒前
22秒前
CipherSage应助JZ1640采纳,获得10
24秒前
科研通AI2S应助小小鱼采纳,获得10
25秒前
27秒前
hsyyk完成签到,获得积分10
28秒前
不安青牛应助科研通管家采纳,获得10
29秒前
不安青牛应助科研通管家采纳,获得10
29秒前
SciGPT应助科研通管家采纳,获得10
29秒前
bkagyin应助科研通管家采纳,获得10
29秒前
不安青牛应助科研通管家采纳,获得10
29秒前
汉堡包应助科研通管家采纳,获得10
29秒前
Jasper应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
脑洞疼应助科研通管家采纳,获得10
29秒前
打打应助科研通管家采纳,获得10
29秒前
正直的夏真完成签到 ,获得积分10
33秒前
听春风完成签到,获得积分10
33秒前
善学以致用应助清神安采纳,获得10
35秒前
听春风发布了新的文献求助10
36秒前
37秒前
hd关闭了hd文献求助
37秒前
iWatchTheMoon应助健壮的如松采纳,获得10
38秒前
LL完成签到,获得积分10
38秒前
38秒前
39秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162031
求助须知:如何正确求助?哪些是违规求助? 2813164
关于积分的说明 7898852
捐赠科研通 2472153
什么是DOI,文献DOI怎么找? 1316366
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129