Combining Network-based and Matrix Factorization to Predict Novel Drug-target Interactions: A Case Study Using the Brazilian Natural Chemical Database

矩阵分解 计算机科学 化学信息学 水准点(测量) 药物发现 因式分解 数据挖掘 机器学习 人工智能 生物信息学 算法 生物 特征向量 物理 大地测量学 量子力学 地理
作者
Ronald Sodré Martins,Marcelo Ferreira da Costa Gomes,Ernesto R. Caffarena
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:17 (9): 793-803 被引量:3
标识
DOI:10.2174/1574893617666220820105258
摘要

Background: Chemogenomic techniques use mathematical calculations to predict new DrugTarget Interactions (DTIs) based on drugs' chemical and biological information and pharmacological targets. Compared to other structure-based computational methods, they are faster and less expensive. Network analysis and matrix factorization are two practical chemogenomic approaches for predicting DTIs from many drugs and targets. However, despite the extensive literature introducing various chemogenomic techniques and methodologies, there is no consensus for predicting interactions using a drug or a target, a set of drugs, and a dataset of known interactions Methods: This study predicted novel DTIs from a limited collection of drugs using a heterogeneous ensemble based on network and matrix factorization techniques. We examined three network-based approaches and two matrix factorization-based methods on benchmark datasets. Then, we used one network approach and one matrix factorization technique on a small collection of Brazilian plant-derived pharmaceuticals. Results: We have discovered two novel DTIs and compared them to the Therapeutic Target Database to detect linked disorders, such as breast cancer, prostate cancer, and Cushing syndrome, with two drugs (Quercetin and Luteolin) originating from Brazilian plants. Conclusion: The suggested approach allows assessing the performance of approaches only based on their sensitivity, independent of their unfavorable interactions. Findings imply that integrating network and matrix factorization results might be a helpful technique in bioinformatics investigations involving the development of novel medicines from a limited range of drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天呼的海角完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
jiangcai完成签到,获得积分10
5秒前
Cherry完成签到,获得积分10
7秒前
正能量的可可可完成签到,获得积分10
7秒前
tuo zhang发布了新的文献求助10
10秒前
草莓养乐多完成签到 ,获得积分10
10秒前
糊涂完成签到,获得积分10
10秒前
哦哦哦发布了新的文献求助10
10秒前
in完成签到 ,获得积分10
11秒前
pilot完成签到,获得积分10
13秒前
劣根完成签到,获得积分10
14秒前
Liang发布了新的文献求助20
14秒前
16秒前
17秒前
曾小莹完成签到,获得积分10
17秒前
苏信怜完成签到,获得积分10
18秒前
21秒前
大气灵枫发布了新的文献求助10
21秒前
nn发布了新的文献求助10
22秒前
tuo zhang完成签到,获得积分10
24秒前
务实的绝悟完成签到,获得积分10
24秒前
怡然问晴发布了新的文献求助10
26秒前
开拖拉机的医学僧完成签到 ,获得积分10
27秒前
体贴凌柏发布了新的文献求助10
28秒前
Kinn完成签到,获得积分10
29秒前
29秒前
华仔应助枕星采纳,获得10
29秒前
Perry应助科研通管家采纳,获得30
30秒前
Jasper应助科研通管家采纳,获得10
30秒前
Jasper应助科研通管家采纳,获得30
30秒前
共享精神应助科研通管家采纳,获得30
30秒前
31秒前
无花果应助科研通管家采纳,获得10
31秒前
小二郎应助科研通管家采纳,获得10
31秒前
CipherSage应助科研通管家采纳,获得10
31秒前
bkagyin应助科研通管家采纳,获得10
31秒前
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029