亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combining Network-based and Matrix Factorization to Predict Novel Drug-target Interactions: A Case Study Using the Brazilian Natural Chemical Database

矩阵分解 计算机科学 化学信息学 水准点(测量) 药物发现 因式分解 数据挖掘 机器学习 人工智能 生物信息学 算法 生物 特征向量 物理 大地测量学 量子力学 地理
作者
Ronald Sodré Martins,Marcelo Ferreira da Costa Gomes,Ernesto R. Caffarena
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:17 (9): 793-803 被引量:3
标识
DOI:10.2174/1574893617666220820105258
摘要

Background: Chemogenomic techniques use mathematical calculations to predict new DrugTarget Interactions (DTIs) based on drugs' chemical and biological information and pharmacological targets. Compared to other structure-based computational methods, they are faster and less expensive. Network analysis and matrix factorization are two practical chemogenomic approaches for predicting DTIs from many drugs and targets. However, despite the extensive literature introducing various chemogenomic techniques and methodologies, there is no consensus for predicting interactions using a drug or a target, a set of drugs, and a dataset of known interactions Methods: This study predicted novel DTIs from a limited collection of drugs using a heterogeneous ensemble based on network and matrix factorization techniques. We examined three network-based approaches and two matrix factorization-based methods on benchmark datasets. Then, we used one network approach and one matrix factorization technique on a small collection of Brazilian plant-derived pharmaceuticals. Results: We have discovered two novel DTIs and compared them to the Therapeutic Target Database to detect linked disorders, such as breast cancer, prostate cancer, and Cushing syndrome, with two drugs (Quercetin and Luteolin) originating from Brazilian plants. Conclusion: The suggested approach allows assessing the performance of approaches only based on their sensitivity, independent of their unfavorable interactions. Findings imply that integrating network and matrix factorization results might be a helpful technique in bioinformatics investigations involving the development of novel medicines from a limited range of drugs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
36秒前
zl发布了新的文献求助10
40秒前
hhx完成签到,获得积分20
53秒前
zl完成签到,获得积分10
53秒前
Wei发布了新的文献求助10
1分钟前
科研通AI6应助曦耀采纳,获得10
1分钟前
小马哥完成签到,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
香蕉觅云应助doublenine18采纳,获得10
3分钟前
科研通AI6应助曦耀采纳,获得10
3分钟前
zxcvvbb1001完成签到 ,获得积分10
3分钟前
3分钟前
doublenine18发布了新的文献求助10
3分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
科研通AI6应助曦耀采纳,获得10
4分钟前
wls完成签到 ,获得积分10
4分钟前
4分钟前
shengbo完成签到 ,获得积分10
4分钟前
Akaza完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639719
求助须知:如何正确求助?哪些是违规求助? 4750040
关于积分的说明 15007251
捐赠科研通 4797884
什么是DOI,文献DOI怎么找? 2564024
邀请新用户注册赠送积分活动 1522880
关于科研通互助平台的介绍 1482534