Combining Network-based and Matrix Factorization to Predict Novel Drug-target Interactions: A Case Study Using the Brazilian Natural Chemical Database

矩阵分解 计算机科学 化学信息学 水准点(测量) 药物发现 因式分解 数据挖掘 机器学习 人工智能 生物信息学 算法 生物 特征向量 物理 大地测量学 量子力学 地理
作者
Ronald Sodré Martins,Marcelo Ferreira da Costa Gomes,Ernesto R. Caffarena
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:17 (9): 793-803 被引量:3
标识
DOI:10.2174/1574893617666220820105258
摘要

Background: Chemogenomic techniques use mathematical calculations to predict new DrugTarget Interactions (DTIs) based on drugs' chemical and biological information and pharmacological targets. Compared to other structure-based computational methods, they are faster and less expensive. Network analysis and matrix factorization are two practical chemogenomic approaches for predicting DTIs from many drugs and targets. However, despite the extensive literature introducing various chemogenomic techniques and methodologies, there is no consensus for predicting interactions using a drug or a target, a set of drugs, and a dataset of known interactions Methods: This study predicted novel DTIs from a limited collection of drugs using a heterogeneous ensemble based on network and matrix factorization techniques. We examined three network-based approaches and two matrix factorization-based methods on benchmark datasets. Then, we used one network approach and one matrix factorization technique on a small collection of Brazilian plant-derived pharmaceuticals. Results: We have discovered two novel DTIs and compared them to the Therapeutic Target Database to detect linked disorders, such as breast cancer, prostate cancer, and Cushing syndrome, with two drugs (Quercetin and Luteolin) originating from Brazilian plants. Conclusion: The suggested approach allows assessing the performance of approaches only based on their sensitivity, independent of their unfavorable interactions. Findings imply that integrating network and matrix factorization results might be a helpful technique in bioinformatics investigations involving the development of novel medicines from a limited range of drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
迷路的虔发布了新的文献求助10
1秒前
Wwt发布了新的文献求助10
1秒前
2秒前
2秒前
vera完成签到,获得积分10
2秒前
归尘发布了新的文献求助10
2秒前
Fay完成签到,获得积分20
2秒前
tramp应助稳重向南采纳,获得20
2秒前
鄢懋卿应助稳重向南采纳,获得20
3秒前
hi应助稳重向南采纳,获得20
3秒前
FashionBoy应助2425采纳,获得10
3秒前
Tina发布了新的文献求助10
4秒前
深情安青应助TOBET采纳,获得10
4秒前
英俊的铭应助飘零枫叶采纳,获得10
5秒前
迷路向松发布了新的文献求助10
5秒前
5秒前
领导范儿应助北栀采纳,获得10
5秒前
5秒前
小蘑菇应助激昂的南烟采纳,获得10
5秒前
DiJia完成签到 ,获得积分10
5秒前
xzleee完成签到 ,获得积分10
5秒前
ATM完成签到,获得积分20
6秒前
求助123完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
CodeCraft应助tdtk采纳,获得10
6秒前
风中的电脑完成签到,获得积分10
7秒前
王丽芳发布了新的文献求助10
7秒前
你66发布了新的文献求助10
7秒前
ATM发布了新的文献求助10
8秒前
小小怪完成签到,获得积分20
8秒前
科目三应助小汤采纳,获得10
8秒前
德爱完成签到,获得积分10
8秒前
可爱的函函应助mmRadio采纳,获得10
8秒前
科研通AI2S应助张小哥12采纳,获得10
9秒前
9秒前
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970632
求助须知:如何正确求助?哪些是违规求助? 3515261
关于积分的说明 11177794
捐赠科研通 3250448
什么是DOI,文献DOI怎么找? 1795314
邀请新用户注册赠送积分活动 875781
科研通“疑难数据库(出版商)”最低求助积分说明 805073