Hybrid Carbon Nanotubes–Graphene Nanostructures: Modeling, Formation, Characterization

石墨烯 材料科学 碳纳米管 场电子发射 拉曼光谱 纳米结构 纳米技术 基质(水族馆) 石墨烯纳米带 电子 光学 量子力学 海洋学 物理 地质学
作者
Alexander Yu. Gerasimenko,Artem V. Kuksin,Yury P. Shaman,E. P. Kitsyuk,Yulia E. Fedorova,Denis T. Murashko,Artemiy A. Shamanaev,Elena M. Eganova,A.V. Sysa,Mikhail S. Savelyev,Dmitry V. Telyshev,Alexander A. Pavlov,Olga E. Glukhova
出处
期刊:Nanomaterials [MDPI AG]
卷期号:12 (16): 2812-2812 被引量:1
标识
DOI:10.3390/nano12162812
摘要

A technology for the formation and bonding with a substrate of hybrid carbon nanostructures from single-walled carbon nanotubes (SWCNT) and reduced graphene oxide (rGO) by laser radiation is proposed. Molecular dynamics modeling by the real-time time-dependent density functional tight-binding (TD-DFTB) method made it possible to reveal the mechanism of field emission centers formation in carbon nanostructures layers. Laser radiation stimulates the formation of graphene-nanotube covalent contacts and also induces a dipole moment of hybrid nanostructures, which ensures their orientation along the force lines of the radiation field. The main mechanical and emission characteristics of the formed hybrid nanostructures were determined. By Raman spectroscopy, the effect of laser radiation energy on the defectiveness of all types of layers formed from nanostructures was determined. Laser exposure increased the hardness of all samples more than twice. Maximum hardness was obtained for hybrid nanostructure with a buffer layer (bl) of rGO and the main layer of SWCNT-rGO(bl)-SWCNT and was 54.4 GPa. In addition, the adhesion of rGO to the substrate and electron transport between the substrate and rGO(bl)-SWCNT increased. The rGO(bl)-SWCNT cathode with an area of ~1 mm2 showed a field emission current density of 562 mA/cm2 and stability for 9 h at a current of 1 mA. The developed technology for the formation of hybrid nanostructures can be used both to create high-performance and stable field emission cathodes and in other applications where nanomaterials coating with good adhesion, strength, and electrical conductivity is required.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎元蝶完成签到,获得积分10
刚刚
你好完成签到,获得积分10
刚刚
刚刚
冷静傲丝完成签到 ,获得积分10
1秒前
1秒前
2秒前
Jomain完成签到,获得积分10
2秒前
研友_nVNBVn发布了新的文献求助10
3秒前
金海完成签到 ,获得积分10
3秒前
糕手发布了新的文献求助10
3秒前
hyekyo完成签到,获得积分10
3秒前
舒适涵山完成签到,获得积分10
3秒前
凌氏冯雯完成签到,获得积分20
4秒前
我爱香菜香菜爱我完成签到,获得积分10
4秒前
wy完成签到 ,获得积分10
4秒前
找文献呢完成签到,获得积分10
4秒前
huihui265发布了新的文献求助10
5秒前
北月南弦发布了新的文献求助10
5秒前
smottom应助轩辕一笑采纳,获得10
6秒前
耍酷的白梦完成签到,获得积分10
6秒前
7秒前
三七二十一完成签到 ,获得积分10
7秒前
科研通AI6应助循环采纳,获得10
8秒前
Vivian完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
cccjjjhhh完成签到,获得积分10
9秒前
wgy完成签到 ,获得积分10
9秒前
10秒前
星宇星辰完成签到,获得积分20
11秒前
林慕然2023完成签到,获得积分10
11秒前
大模型应助xinying采纳,获得10
12秒前
大气白翠完成签到,获得积分10
12秒前
偏偏完成签到 ,获得积分10
12秒前
张张发布了新的文献求助10
12秒前
苗条馒头完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
直率猕猴桃完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664846
求助须知:如何正确求助?哪些是违规求助? 4871596
关于积分的说明 15109131
捐赠科研通 4823659
什么是DOI,文献DOI怎么找? 2582486
邀请新用户注册赠送积分活动 1536484
关于科研通互助平台的介绍 1495036