High-Throughput Generation, Manipulation, and Degradation of Magnetic Nanoparticle-Laden Alginate Core-Shell Beads for Single Bacteria Culturing Analysis

微流控 纳米技术 细菌 微生物 磁性纳米粒子 工作流程 乳状液 生物膜 材料科学 纳米颗粒 化学 计算机科学 化学工程 生物 工程类 数据库 遗传学
作者
Shuai Yuan,Yulin Zhang,Lang Nan,P. T. Lai,Tong Zhang,Philip W. T. Pong,Ho Cheung Shum
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:22 (3): 487-497 被引量:2
标识
DOI:10.1109/tnb.2022.3205057
摘要

Microbes could be found almost everywhere around us and have significant impacts on our human society. The treatment of microorganisms has long been seen as a complex problem. Till now, most of the genetic and phenotypic information regarding rare species is buried in the bulk microbial colony due to a lack of efficient tools to screen live bacteria. Droplet microfluidics offers a powerful approach to address this problem. However, the interactions among bacteria and their living environment are entirely restricted by the water/oil interfaces in conventional water/oil single emulsion-based microfluidic systems. Here, we demonstrate an oil-mediated all-aqueous microfluidic workflow that can overcome this drawback. In contrast to the previous works, our all-aqueous culturing environment allows cell-cell and cell-environment interactions, thus facilitating the growth of bacteria. Fe3O4 magnetic nanoparticles added into the alginate beads enables on-chip manipulation of the microcapsules. The core-shell structure separately encapsulates bacteria and magnetic particles in the core and shell to avoid contamination. We demonstrate the feasibility of this approach by single bacterium culturing in droplet-templated alginate beads. Finally, a new approach is proposed to degrade the alginate beads for post-treatment. This novel microfluidic workflow can create new opportunities for microbial applications, such as bacteria culturing and screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨曦完成签到,获得积分10
刚刚
斯文败类应助Serein采纳,获得10
刚刚
1秒前
英俊的铭应助SHNU_YS采纳,获得10
1秒前
杰哥完成签到,获得积分10
1秒前
就离谱完成签到,获得积分10
2秒前
hai发布了新的文献求助10
2秒前
像风完成签到,获得积分10
2秒前
3秒前
子明完成签到 ,获得积分10
4秒前
Komorebi完成签到,获得积分10
5秒前
5秒前
5秒前
小鱼完成签到,获得积分10
6秒前
如意烨霖完成签到,获得积分10
6秒前
7秒前
leeyehai完成签到,获得积分10
7秒前
7秒前
king完成签到,获得积分10
8秒前
CodeCraft应助无情石头采纳,获得10
8秒前
9秒前
Fa完成签到,获得积分10
10秒前
affff完成签到 ,获得积分10
10秒前
hang完成签到,获得积分10
10秒前
Crisp完成签到,获得积分10
11秒前
lalala应助coolru采纳,获得10
11秒前
小白系列产品完成签到,获得积分10
11秒前
uwasa发布了新的文献求助10
11秒前
顺心冰之完成签到,获得积分10
11秒前
11秒前
柳煜城完成签到,获得积分10
12秒前
animages完成签到,获得积分10
12秒前
12秒前
墨小杭完成签到,获得积分10
13秒前
Z01完成签到,获得积分10
13秒前
天真的万声完成签到,获得积分10
13秒前
King完成签到,获得积分10
13秒前
14秒前
NexusExplorer应助就离谱采纳,获得10
14秒前
YTT完成签到,获得积分10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311408
求助须知:如何正确求助?哪些是违规求助? 2944145
关于积分的说明 8517601
捐赠科研通 2619516
什么是DOI,文献DOI怎么找? 1432421
科研通“疑难数据库(出版商)”最低求助积分说明 664655
邀请新用户注册赠送积分活动 649867