Integrated optimization model for hierarchical service network design and passenger assignment in an urban rail transit network: A Lagrangian duality reformulation and an iterative layered optimization framework based on forward-passing and backpropagation

数学优化 计算机科学 对偶(序理论) 拉格朗日 网络规划与设计 服务(商务) 数学 计算机网络 应用数学 业务 离散数学 营销
作者
Pan Shang,Liya Yang,Yu Yao,Lu Tong,Senyan Yang,Xiwei Mi
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:144: 103877-103877 被引量:13
标识
DOI:10.1016/j.trc.2022.103877
摘要

• Propose an integrated optimization model for transit service network design and passenger assignment. • Reformulate the optimization model as two coupled resource allocation sub-problems. • Develop an iterative layered optimization framework based on forward-passing and backpropagation to solve the model. • Test the model and solution approach on a simple network and Beijing Metro Network. This study solves an integrated operational problem regarding hierarchical service network design and passenger assignment for urban rail transit systems. We propose an innovative nonlinear programming model for determining the number of stocking trains at each depot, number of operating trains on each line, and line-based service frequency and capacity. Given a certain passenger demand matrix, this model simultaneously determines the system-optimal path flow while assigning passengers to lines to minimize the passenger total travel cost. The proposed nonlinear programming model is then reformulated based on Lagrangian duality as two resource allocation sub-problems represented as artificial neural networks. The forward pass of the train flow sequentially assigns train resources to candidate depots and lines, and the forward pass of the passenger flow sequentially assigns the passenger demand to candidate paths and links. The solution can be improved by backpropagation of the first-order gradients and re-assignment of the train resources and passenger demand with updated weights between different layers under the proposed layered optimization framework. A comparative analysis indicates that the proposed solution approach can obtain an approximate optimal solution for the integrated optimization model, thereby providing an optimized operational hierarchical service plan and system-optimal passenger assignment results. The proposed methodology and solution approach are evaluated on a simple network case and Beijing Metro Network case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
3秒前
橙子发布了新的文献求助10
5秒前
思源应助大仙采纳,获得10
5秒前
刺猬发布了新的文献求助10
7秒前
wisdom发布了新的文献求助10
8秒前
R喻andom发布了新的文献求助10
9秒前
10秒前
11秒前
思源应助魔幻熊猫采纳,获得10
12秒前
13秒前
我是老大应助fan采纳,获得10
13秒前
胖头鱼完成签到,获得积分10
17秒前
打打应助刻苦的尔白采纳,获得10
18秒前
刺猬完成签到,获得积分10
18秒前
深情安青应助闪闪的鹏博采纳,获得10
18秒前
19秒前
Xue完成签到,获得积分20
20秒前
20秒前
臧佳莹发布了新的文献求助20
23秒前
23秒前
SPQR完成签到,获得积分10
25秒前
25秒前
魔幻熊猫发布了新的文献求助10
25秒前
123完成签到,获得积分10
26秒前
26秒前
Lin_Yongqi完成签到 ,获得积分10
27秒前
wisdom完成签到,获得积分10
30秒前
Akim应助无情干饭崽采纳,获得10
30秒前
hyyy完成签到 ,获得积分10
31秒前
zzz完成签到,获得积分10
31秒前
asdfj完成签到,获得积分10
31秒前
九耳久知发布了新的文献求助10
31秒前
传奇3应助irisjlj采纳,获得10
33秒前
Philthee完成签到,获得积分10
34秒前
34秒前
隐形曼青应助臧佳莹采纳,获得10
36秒前
科研通AI2S应助lvzhigang采纳,获得10
37秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141717
求助须知:如何正确求助?哪些是违规求助? 2792627
关于积分的说明 7803778
捐赠科研通 2448954
什么是DOI,文献DOI怎么找? 1302939
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601244