Combined hyperspectral imaging technology with 2D convolutional neural network for near geographical origins identification of wolfberry

高光谱成像 线性判别分析 卷积神经网络 主成分分析 二次分类器 偏最小二乘回归 模式识别(心理学) 人工智能 集合(抽象数据类型) 判别式 数学 计算机科学 机器学习 支持向量机 程序设计语言
作者
Jie Hao,Fujia Dong,Songlei Wang,Yalei Li,Jiarui Cui,Jiali Men,Sijia Liu
出处
期刊:Journal of Food Measurement and Characterization [Springer Nature]
卷期号:16 (6): 4923-4933 被引量:14
标识
DOI:10.1007/s11694-022-01552-6
摘要

The composition of the functional components in wolfberry may be influenced by different geographical origins, and it is critical to identify the geographical origins of wolfberry. This paper proposes a near geographical origins identification model of Ningxia wolfberry using hyperspectral imaging technology (HSI) and 2D convolutional neural network (2D-CNN) algorithms. The model used methods including competitive adaptive reweighed sampling (CARS), uninformative variable elimination (UVE) and interval variable iterative space shrinking analysis (iVISSA) to extract different characteristic wavelengths. The 2D-CNN model was compared with linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), combined principal component analysis with linear discriminant analysis (PCA-LDA), combined principal component analysis with quadratic discriminant analysis (PCA-QDA), and partial least squares discriminant analysis (PLS-DA). For the original spectral dataset, the 2D-CNN model performed the best, with the calibration set and prediction set accuracies of 97.4% and 91.32%, respectively. For the characteristic wavelength dataset, the 2D-CNN-iVISSA-CNN model exhibited the best accuracy, with the calibration set and prediction set accuracies of 98.12% and 90.27%, respectively. All models established based on the characteristic wavelengths extracted by iVISSA method perform well in identifying the Zhongning wolfberries. Especially for the 2D-CNN-iVISSA-CNN model achieves the best classification effect with an accuracy of up to 99.5% and 97.7% on the training and prediction set for the Zhongning wolfberries. This study indicates that the combination of hyperspectral imaging technology and 2D-CNN algorithms can identify the near geographical origins of wolfberry efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
K先生完成签到,获得积分10
刚刚
王羊补牢完成签到 ,获得积分10
刚刚
EwhenQ完成签到,获得积分10
1秒前
wanci应助兔兔要睡觉采纳,获得10
1秒前
YangXing完成签到,获得积分20
2秒前
牛牛要当院士喽完成签到,获得积分10
2秒前
追寻清完成签到,获得积分10
2秒前
漓一关注了科研通微信公众号
2秒前
科目三应助Y先生采纳,获得10
4秒前
dd发布了新的文献求助10
4秒前
假不贾发布了新的文献求助50
4秒前
4秒前
4秒前
5秒前
5秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
Ava应助科研通管家采纳,获得10
8秒前
zho应助科研通管家采纳,获得10
8秒前
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
8秒前
哒哒发布了新的文献求助10
8秒前
pluto应助al采纳,获得10
8秒前
柔弱小蝴蝶完成签到,获得积分10
8秒前
zyy6657完成签到,获得积分10
9秒前
鱼秋完成签到,获得积分10
9秒前
9秒前
11秒前
公西香露发布了新的文献求助10
11秒前
Owen应助ZYJ采纳,获得10
11秒前
12秒前
12秒前
shuyu发布了新的文献求助10
13秒前
14秒前
14秒前
月亮完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540680
求助须知:如何正确求助?哪些是违规求助? 3117973
关于积分的说明 9333396
捐赠科研通 2815872
什么是DOI,文献DOI怎么找? 1547779
邀请新用户注册赠送积分活动 721175
科研通“疑难数据库(出版商)”最低求助积分说明 712578