丁酸盐
代谢物
药理学
化学
细胞内
钙代谢
癌症研究
钙
生物化学
生物
发酵
有机化学
作者
Yibin Che,Guoyu Chen,Qianqian Guo,Yourong Duan,Haizhong Feng,Qiang Xia
出处
期刊:Hepatology
[Wiley]
日期:2023-01-03
卷期号:78 (1): 88-102
被引量:26
标识
DOI:10.1097/hep.0000000000000047
摘要
Background and Aims: Gut microbiota are recognized to be important for anticancer therapy, yet the underlying mechanism is not clear. Here, through the analysis of clinical samples, we identify the mechanism by which the gut microbial metabolite butyrate inhibits HCC and then explore new strategies for HCC treatment. Approach and Results: In our study, we demonstrate that gut microbial metabolite butyrate improves anticancer therapy efficacy by regulating intracellular calcium homeostasis. Using liquid chromatography-mass spectrometry analysis, we found that butyrate metabolism is activated in HCC patients compared with healthy individuals. Butyrate levels are lower in the plasma of HCC patients by gas chromatography-mass spectrometry (GC-MS) analysis. Butyrate supplementation or depletion of short-chain Acyl-CoA dehydrogenase (SCAD) gene (ACADS), encoding a key enzyme for butyrate metabolism, significantly inhibits HCC proliferation and metastasis. The profiling analysis of genes upregulated by butyrate supplementation or ACADS knockdown reveals that calcium signaling pathway is activated, leading to dysregulation of intracellular calcium homeostasis and production of reactive oxygen species. Butyrate supplementation improves the therapy efficacy of a tyrosine kinase inhibitor sorafenib. On the basis of these findings, we developed butyrate and sorafenib coencapsulated mPEG-PLGA-PLL nanoparticles coated with anti-GPC3 antibody (BS@PEAL-GPC3) to prolong the retention time of drugs and enhance drug targeting, leading to high anticancer efficacy. BS@PEAL-GPC3 nanoparticles significantly reduce HCC progression. In addition, BS@PEAL-GPC3 nanoparticles display excellent HCC targeting with excellent safety. Conclusions: In conclusion, our findings provide new insight into the mechanism by which the gut microbial metabolites inhibit HCC progression, suggesting a translatable therapeutics approach to enhance the clinical targeted therapeutic efficacy.
科研通智能强力驱动
Strongly Powered by AbleSci AI