Exploiting machine learning for controlled synthesis of carbon dots-based corrosion inhibitors

腐蚀 随机森林 均方误差 计算机科学 相关系数 过程(计算) 材料科学 人工智能 机器学习 数学 冶金 统计 操作系统
作者
Haijie He,E Shuang,Li Ai,Xiaogang Wang,Jun Yao,Chuang He,Boyuan Cheng
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:419: 138210-138210 被引量:39
标识
DOI:10.1016/j.jclepro.2023.138210
摘要

Benefitting from their prominent corrosion inhibition properties, excellent water solubility and benign environmental friendliness, carbon dots (CDs) have functioned as an ideal candidate for next-generation green corrosion inhibitors. However, the extensive adoption of the trial-and-error route driven by artificial experience in the preparation of CDs-based corrosion inhibitors leads to resource waste and environmental implications, detrimental to their sustainable development. It is still a considerable challenge to controllably prepare CDs-based corrosion inhibitors with the predictable inhibition efficiency. Herein, firstly exploiting a data-driven machine learning (ML) approach, this study aims to precisely predict the inhibition efficiency of CDs and optimize their synthesis route, resulting in the controlled synthesis of CDs-based corrosion inhibitors. Specifically, the dataset is constructed by combining 102 data points on CDs synthesis and inhibition efficiency from numerous published studies and our own experiments. After training and evaluation of different ML models, the Random Forest (RF) ML regression model is chosen with the lowest root-mean-square error and mean absolute error as well as the highest coefficient of determination. The results show that this RF model can comprehensively reveal the relationship between various hydrothermal synthesis parameters and the inhibition efficiency. Guided by the RF model, the inhibition efficiencies of CDs-based corrosion inhibitors are accurately predicted with an error less than 10%, and based on the genetic algorithm, their synthesis route is intelligently optimized. This work demonstrates the feasibility of ML techniques in guiding the optimization of synthesis conditions for CDs-based corrosion inhibitors. This optimization process results in reduced development time and cost, contributing to the sustainability and cleaner production of inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
百香果bxg完成签到 ,获得积分10
3秒前
疯狂的绮山完成签到,获得积分10
6秒前
威武皮带完成签到,获得积分10
7秒前
ED应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得30
7秒前
7秒前
你怎么睡得着觉完成签到,获得积分10
7秒前
9秒前
13秒前
Ava应助zzz采纳,获得10
15秒前
15秒前
SciGPT应助听风者采纳,获得10
16秒前
知犯何逆完成签到 ,获得积分10
16秒前
18秒前
海荣完成签到,获得积分10
19秒前
20秒前
JOBZ完成签到,获得积分10
20秒前
20秒前
木子木子粒完成签到 ,获得积分10
21秒前
春江完成签到,获得积分10
24秒前
Gstar完成签到,获得积分10
24秒前
24秒前
27秒前
28秒前
29秒前
完美世界应助小气鬼采纳,获得30
31秒前
31秒前
共享精神应助lkz采纳,获得10
32秒前
32秒前
33秒前
大个应助苏苏苏采纳,获得10
34秒前
35秒前
phil完成签到,获得积分10
36秒前
听风者发布了新的文献求助10
36秒前
kiwi完成签到 ,获得积分10
37秒前
跳跃的洋葱完成签到 ,获得积分10
37秒前
忧郁凌波发布了新的文献求助10
38秒前
39秒前
Alina完成签到 ,获得积分10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343