Exploiting machine learning for controlled synthesis of carbon dots-based corrosion inhibitors

腐蚀 随机森林 均方误差 计算机科学 相关系数 过程(计算) 材料科学 人工智能 机器学习 数学 冶金 统计 操作系统
作者
Haijie He,E Shuang,Li Ai,Xiaogang Wang,Jun Yao,Chuang He,Boyuan Cheng
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:419: 138210-138210 被引量:39
标识
DOI:10.1016/j.jclepro.2023.138210
摘要

Benefitting from their prominent corrosion inhibition properties, excellent water solubility and benign environmental friendliness, carbon dots (CDs) have functioned as an ideal candidate for next-generation green corrosion inhibitors. However, the extensive adoption of the trial-and-error route driven by artificial experience in the preparation of CDs-based corrosion inhibitors leads to resource waste and environmental implications, detrimental to their sustainable development. It is still a considerable challenge to controllably prepare CDs-based corrosion inhibitors with the predictable inhibition efficiency. Herein, firstly exploiting a data-driven machine learning (ML) approach, this study aims to precisely predict the inhibition efficiency of CDs and optimize their synthesis route, resulting in the controlled synthesis of CDs-based corrosion inhibitors. Specifically, the dataset is constructed by combining 102 data points on CDs synthesis and inhibition efficiency from numerous published studies and our own experiments. After training and evaluation of different ML models, the Random Forest (RF) ML regression model is chosen with the lowest root-mean-square error and mean absolute error as well as the highest coefficient of determination. The results show that this RF model can comprehensively reveal the relationship between various hydrothermal synthesis parameters and the inhibition efficiency. Guided by the RF model, the inhibition efficiencies of CDs-based corrosion inhibitors are accurately predicted with an error less than 10%, and based on the genetic algorithm, their synthesis route is intelligently optimized. This work demonstrates the feasibility of ML techniques in guiding the optimization of synthesis conditions for CDs-based corrosion inhibitors. This optimization process results in reduced development time and cost, contributing to the sustainability and cleaner production of inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
krovanh完成签到,获得积分10
1秒前
Anoodleatlarge完成签到 ,获得积分10
2秒前
JamesPei应助虎虎虎采纳,获得10
4秒前
蔡从安发布了新的文献求助10
4秒前
5秒前
俭朴的身影完成签到,获得积分10
5秒前
俭朴的元绿完成签到,获得积分10
5秒前
潘白玉完成签到 ,获得积分10
5秒前
simon完成签到,获得积分10
5秒前
小何完成签到 ,获得积分10
5秒前
6秒前
不知道完成签到,获得积分10
6秒前
7秒前
窝窝头完成签到 ,获得积分10
7秒前
panpanliumin完成签到,获得积分0
8秒前
甜蜜水蜜桃完成签到 ,获得积分10
9秒前
852应助科研通管家采纳,获得50
9秒前
慕青应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
萧水白应助科研通管家采纳,获得10
9秒前
9秒前
葡萄成熟发布了新的文献求助10
10秒前
李李李李完成签到,获得积分10
10秒前
10秒前
hanyang965发布了新的文献求助10
11秒前
甜甜圈发布了新的文献求助10
13秒前
南关三完成签到,获得积分10
14秒前
无尘完成签到 ,获得积分10
15秒前
15秒前
高歌猛进完成签到,获得积分10
16秒前
Goblin完成签到 ,获得积分10
17秒前
QIN完成签到,获得积分10
17秒前
研友_Lpawrn完成签到,获得积分10
17秒前
葡萄成熟完成签到,获得积分10
18秒前
田二亩完成签到,获得积分10
19秒前
King强完成签到,获得积分10
20秒前
木雨亦潇潇完成签到,获得积分10
20秒前
tfldog发布了新的文献求助10
21秒前
皮汤汤完成签到 ,获得积分10
21秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150658
求助须知:如何正确求助?哪些是违规求助? 2802207
关于积分的说明 7846456
捐赠科研通 2459547
什么是DOI,文献DOI怎么找? 1309286
科研通“疑难数据库(出版商)”最低求助积分说明 628821
版权声明 601757