Differentiation Between Phyllodes Tumors and Fibroadenomas of Breast Using Mammography-based Machine Learning Methods: A Preliminary Study

医学 接收机工作特性 人工智能 无线电技术 乳腺摄影术 逻辑回归 支持向量机 Lasso(编程语言) 交叉验证 机器学习 特征选择 乳腺癌 曲线下面积 模式识别(心理学) 放射科 内科学 癌症 计算机科学 万维网 药代动力学
作者
Xue‐Ying Deng,Pei‐Wei Cao,Shuai‐Ming Nan,Yuepeng Pan,Yu Chang,Ting Pan,Gang Dai
出处
期刊:Clinical Breast Cancer [Elsevier BV]
卷期号:23 (7): 729-736 被引量:5
标识
DOI:10.1016/j.clbc.2023.07.002
摘要

To investigate the diagnostic performance of a mammography-based radiomics model for distinguishing phyllodes tumors (PTs) from fibroadenomas (FAs) of the breast.A total of 156 patients were retrospectively included (75 with PTs, 81 with FAs) and divided into training and validation groups at a ratio of 7:3. Radiomics features were extracted from craniocaudal and mediolateral oblique images. The least absolute shrinkage and selection operator (LASSO) algorithm and principal component analysis (PCA) were performed to select features. Three machine learning classifiers, including logistic regression (LR), K-nearest neighbor classifier (KNN) and support vector machine (SVM), were implemented in the radiomics model, imaging model and combined model. Receiver operating characteristic curves, area under the curve (AUC), sensitivity and specificity were computed.Among 1084 features, the LASSO algorithm selected 17 features, and PCA further selected 6 features. Three machine learning classifiers yielded the same AUC of 0.935 in the validation group for the radiomics model. In the imaging model, KNN yielded the highest accuracy rate of 89.4% and AUC of 0.947 in the validation set. For the combined model, the SVM classifier reached the highest AUC of 0.918 with an accuracy rate of 86.2%, sensitivity of 83.9%, and specificity of 89.4% in the training group. In the validation group, LR yielded the highest AUC of 0.973. The combined model had a relatively higher AUC than the radiomics model or imaging model, especially in the validation group.Mammography-based radiomics features demonstrate good diagnostic performance for discriminating PTs from FAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无私语儿完成签到,获得积分10
刚刚
bao完成签到,获得积分10
刚刚
赵婧发布了新的文献求助10
1秒前
ydd发布了新的文献求助10
1秒前
龚培军发布了新的文献求助10
1秒前
务实飞荷完成签到,获得积分10
2秒前
hkh发布了新的文献求助10
2秒前
田様应助Gpu_broken采纳,获得10
3秒前
____完成签到,获得积分10
3秒前
猪猪hero发布了新的文献求助10
3秒前
3秒前
无花果应助曾云璐采纳,获得10
4秒前
Owen应助ohnk采纳,获得10
4秒前
蛋白激酶完成签到,获得积分10
5秒前
扎心应助油炸丸子采纳,获得10
6秒前
茕凡桃七完成签到,获得积分10
6秒前
6秒前
美有姬完成签到,获得积分10
7秒前
7秒前
11发布了新的文献求助10
7秒前
erin发布了新的文献求助10
7秒前
LSH完成签到,获得积分10
7秒前
8秒前
寂寞的迎天完成签到,获得积分10
8秒前
8秒前
小红完成签到,获得积分10
8秒前
8秒前
拓跋忆霜完成签到,获得积分10
9秒前
wangjie发布了新的文献求助10
9秒前
smzzz发布了新的文献求助10
10秒前
Tender完成签到,获得积分10
10秒前
july发布了新的文献求助10
10秒前
孤独的巨人完成签到,获得积分10
11秒前
11秒前
猪猪hero发布了新的文献求助10
12秒前
丹妮发布了新的文献求助80
12秒前
黎星完成签到,获得积分10
13秒前
11关闭了11文献求助
14秒前
风中的老九完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954647
求助须知:如何正确求助?哪些是违规求助? 3500801
关于积分的说明 11101075
捐赠科研通 3231264
什么是DOI,文献DOI怎么找? 1786399
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751