Differentiation Between Phyllodes Tumors and Fibroadenomas of Breast Using Mammography-based Machine Learning Methods: A Preliminary Study

医学 接收机工作特性 人工智能 无线电技术 乳腺摄影术 逻辑回归 支持向量机 Lasso(编程语言) 交叉验证 机器学习 特征选择 乳腺癌 曲线下面积 模式识别(心理学) 放射科 内科学 癌症 计算机科学 万维网 药代动力学
作者
Xue‐Ying Deng,Pei‐Wei Cao,Shuai‐Ming Nan,Yuepeng Pan,Yu Chang,Ting Pan,Gang Dai
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:23 (7): 729-736 被引量:5
标识
DOI:10.1016/j.clbc.2023.07.002
摘要

To investigate the diagnostic performance of a mammography-based radiomics model for distinguishing phyllodes tumors (PTs) from fibroadenomas (FAs) of the breast.A total of 156 patients were retrospectively included (75 with PTs, 81 with FAs) and divided into training and validation groups at a ratio of 7:3. Radiomics features were extracted from craniocaudal and mediolateral oblique images. The least absolute shrinkage and selection operator (LASSO) algorithm and principal component analysis (PCA) were performed to select features. Three machine learning classifiers, including logistic regression (LR), K-nearest neighbor classifier (KNN) and support vector machine (SVM), were implemented in the radiomics model, imaging model and combined model. Receiver operating characteristic curves, area under the curve (AUC), sensitivity and specificity were computed.Among 1084 features, the LASSO algorithm selected 17 features, and PCA further selected 6 features. Three machine learning classifiers yielded the same AUC of 0.935 in the validation group for the radiomics model. In the imaging model, KNN yielded the highest accuracy rate of 89.4% and AUC of 0.947 in the validation set. For the combined model, the SVM classifier reached the highest AUC of 0.918 with an accuracy rate of 86.2%, sensitivity of 83.9%, and specificity of 89.4% in the training group. In the validation group, LR yielded the highest AUC of 0.973. The combined model had a relatively higher AUC than the radiomics model or imaging model, especially in the validation group.Mammography-based radiomics features demonstrate good diagnostic performance for discriminating PTs from FAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张宇豪发布了新的文献求助10
刚刚
打打应助清修采纳,获得10
2秒前
3秒前
3秒前
3秒前
bkagyin应助爱笑灵雁采纳,获得10
3秒前
情怀应助刘玲采纳,获得10
4秒前
顾矜应助尺素寸心采纳,获得10
4秒前
4秒前
5秒前
warmth完成签到,获得积分10
5秒前
5秒前
萌面大侠完成签到,获得积分10
6秒前
陀飞轮完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
李健应助小石头采纳,获得10
7秒前
可乐发布了新的文献求助10
7秒前
你小子完成签到,获得积分10
8秒前
jialin发布了新的文献求助10
10秒前
爹爹发布了新的文献求助10
10秒前
12秒前
12秒前
14秒前
嘿嘿应助德玛西亚采纳,获得10
14秒前
15秒前
打打应助陀飞轮采纳,获得10
16秒前
尺素寸心发布了新的文献求助10
17秒前
冉宝完成签到,获得积分10
19秒前
19秒前
刘玲发布了新的文献求助10
20秒前
爱笑灵雁发布了新的文献求助10
20秒前
张宇豪完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
brightface123发布了新的文献求助10
22秒前
尺素寸心完成签到,获得积分10
23秒前
SciGPT应助WW采纳,获得10
23秒前
所所应助无头骑士采纳,获得10
25秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453753
求助须知:如何正确求助?哪些是违规求助? 4561288
关于积分的说明 14281867
捐赠科研通 4485257
什么是DOI,文献DOI怎么找? 2456576
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687