Differentiation Between Phyllodes Tumors and Fibroadenomas of Breast Using Mammography-based Machine Learning Methods: A Preliminary Study

医学 接收机工作特性 人工智能 无线电技术 乳腺摄影术 逻辑回归 支持向量机 Lasso(编程语言) 交叉验证 机器学习 特征选择 乳腺癌 曲线下面积 模式识别(心理学) 放射科 内科学 癌症 计算机科学 万维网 药代动力学
作者
Xue‐Ying Deng,Pei‐Wei Cao,Shuai‐Ming Nan,Yuepeng Pan,Yu Chang,Ting Pan,Gang Dai
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:23 (7): 729-736 被引量:5
标识
DOI:10.1016/j.clbc.2023.07.002
摘要

To investigate the diagnostic performance of a mammography-based radiomics model for distinguishing phyllodes tumors (PTs) from fibroadenomas (FAs) of the breast.A total of 156 patients were retrospectively included (75 with PTs, 81 with FAs) and divided into training and validation groups at a ratio of 7:3. Radiomics features were extracted from craniocaudal and mediolateral oblique images. The least absolute shrinkage and selection operator (LASSO) algorithm and principal component analysis (PCA) were performed to select features. Three machine learning classifiers, including logistic regression (LR), K-nearest neighbor classifier (KNN) and support vector machine (SVM), were implemented in the radiomics model, imaging model and combined model. Receiver operating characteristic curves, area under the curve (AUC), sensitivity and specificity were computed.Among 1084 features, the LASSO algorithm selected 17 features, and PCA further selected 6 features. Three machine learning classifiers yielded the same AUC of 0.935 in the validation group for the radiomics model. In the imaging model, KNN yielded the highest accuracy rate of 89.4% and AUC of 0.947 in the validation set. For the combined model, the SVM classifier reached the highest AUC of 0.918 with an accuracy rate of 86.2%, sensitivity of 83.9%, and specificity of 89.4% in the training group. In the validation group, LR yielded the highest AUC of 0.973. The combined model had a relatively higher AUC than the radiomics model or imaging model, especially in the validation group.Mammography-based radiomics features demonstrate good diagnostic performance for discriminating PTs from FAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴心发布了新的文献求助30
1秒前
chenxi完成签到,获得积分20
3秒前
3秒前
4秒前
7秒前
Zachary完成签到,获得积分10
7秒前
7秒前
旋转木马9个完成签到 ,获得积分10
10秒前
10秒前
找不到头大完成签到,获得积分20
11秒前
12秒前
14秒前
没食子酸完成签到,获得积分10
14秒前
15秒前
无极微光应助Jia采纳,获得20
16秒前
胡杨树2006完成签到,获得积分10
17秒前
fujun0095发布了新的文献求助10
18秒前
18秒前
18秒前
wxy发布了新的文献求助10
19秒前
zhaoyue完成签到 ,获得积分10
21秒前
科研狗的春天完成签到 ,获得积分10
22秒前
筷子夹豆腐脑完成签到,获得积分10
23秒前
23秒前
Jenny发布了新的文献求助10
24秒前
Estrella发布了新的文献求助10
24秒前
dandna完成签到 ,获得积分10
24秒前
晴心完成签到,获得积分10
28秒前
苹果鱼完成签到,获得积分10
29秒前
DD完成签到,获得积分10
29秒前
张二田发布了新的文献求助10
30秒前
tracer526发布了新的文献求助10
30秒前
萨尔莫斯发布了新的文献求助10
31秒前
36秒前
王佳俊完成签到,获得积分10
37秒前
37秒前
38秒前
Owen应助辜卅采纳,获得10
40秒前
40秒前
ding应助wxy采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645536
关于积分的说明 14675482
捐赠科研通 4586681
什么是DOI,文献DOI怎么找? 2516518
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951