Differentiation Between Phyllodes Tumors and Fibroadenomas of Breast Using Mammography-based Machine Learning Methods: A Preliminary Study

医学 接收机工作特性 人工智能 无线电技术 乳腺摄影术 逻辑回归 支持向量机 Lasso(编程语言) 交叉验证 机器学习 特征选择 乳腺癌 曲线下面积 模式识别(心理学) 放射科 内科学 癌症 计算机科学 万维网 药代动力学
作者
Xue‐Ying Deng,Pei‐Wei Cao,Shuai‐Ming Nan,Yuepeng Pan,Yu Chang,Ting Pan,Gang Dai
出处
期刊:Clinical Breast Cancer [Elsevier BV]
卷期号:23 (7): 729-736 被引量:5
标识
DOI:10.1016/j.clbc.2023.07.002
摘要

To investigate the diagnostic performance of a mammography-based radiomics model for distinguishing phyllodes tumors (PTs) from fibroadenomas (FAs) of the breast.A total of 156 patients were retrospectively included (75 with PTs, 81 with FAs) and divided into training and validation groups at a ratio of 7:3. Radiomics features were extracted from craniocaudal and mediolateral oblique images. The least absolute shrinkage and selection operator (LASSO) algorithm and principal component analysis (PCA) were performed to select features. Three machine learning classifiers, including logistic regression (LR), K-nearest neighbor classifier (KNN) and support vector machine (SVM), were implemented in the radiomics model, imaging model and combined model. Receiver operating characteristic curves, area under the curve (AUC), sensitivity and specificity were computed.Among 1084 features, the LASSO algorithm selected 17 features, and PCA further selected 6 features. Three machine learning classifiers yielded the same AUC of 0.935 in the validation group for the radiomics model. In the imaging model, KNN yielded the highest accuracy rate of 89.4% and AUC of 0.947 in the validation set. For the combined model, the SVM classifier reached the highest AUC of 0.918 with an accuracy rate of 86.2%, sensitivity of 83.9%, and specificity of 89.4% in the training group. In the validation group, LR yielded the highest AUC of 0.973. The combined model had a relatively higher AUC than the radiomics model or imaging model, especially in the validation group.Mammography-based radiomics features demonstrate good diagnostic performance for discriminating PTs from FAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AllRightReserved完成签到 ,获得积分10
刚刚
糖果发布了新的文献求助10
1秒前
情怀应助胖头鱼please采纳,获得10
2秒前
MOFS发布了新的文献求助10
2秒前
yangsouth发布了新的文献求助10
3秒前
zy完成签到 ,获得积分10
3秒前
Orange应助YKX采纳,获得10
4秒前
6秒前
6秒前
7秒前
hankongli完成签到 ,获得积分10
7秒前
觏尔应助Hanan采纳,获得20
8秒前
涵涵涵hh完成签到,获得积分10
8秒前
8D完成签到,获得积分10
9秒前
10秒前
Jade发布了新的文献求助10
10秒前
车厘子发布了新的文献求助10
11秒前
11秒前
犹豫晓啸发布了新的文献求助10
13秒前
lruri张完成签到,获得积分20
15秒前
wellme发布了新的文献求助10
16秒前
鹏鹏完成签到 ,获得积分10
17秒前
18秒前
ding应助木子采纳,获得10
20秒前
21秒前
Lucas应助livinglast采纳,获得10
22秒前
23秒前
山楂糕完成签到,获得积分10
26秒前
27秒前
27秒前
28秒前
刻苦的竺完成签到 ,获得积分10
30秒前
芋芋完成签到 ,获得积分10
30秒前
王哒哒完成签到,获得积分10
30秒前
雪糕发布了新的文献求助10
31秒前
niuniujia给niuniujia的求助进行了留言
33秒前
gmchen发布了新的文献求助10
33秒前
万能图书馆应助王哒哒采纳,获得30
34秒前
jxx完成签到 ,获得积分10
35秒前
柳贯一完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537416
求助须知:如何正确求助?哪些是违规求助? 3972408
关于积分的说明 12305983
捐赠科研通 3639131
什么是DOI,文献DOI怎么找? 2003673
邀请新用户注册赠送积分活动 1039043
科研通“疑难数据库(出版商)”最低求助积分说明 928497